首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim The genus Kniphofia contains 71 species with an African–Malagasy distribution, including one species from Yemen. The genus has a general Afromontane distribution. Here we explore whether Kniphofia is a floristic indicator of the Afromontane centre of endemism and diversity. The South Africa Centre of diversity and endemism was explored in greater detail to understand biogeographical patterns. Location Africa, Afromontane Region, southern Africa, Madagascar and Yemen. Methods Diversity and endemism for the genus were examined at the continental scale using a chorological approach. Biogeographical patterns and endemism in the South Africa Centre were examined in greater detail using chorology, phenetics, parsimony analysis of endemicity (PAE) and mapping of range‐restricted taxa. Results Six centres of diversity were recovered, five of which are also centres of endemism. Eight subcentres of diversity are proposed, of which only two are considered subcentres of endemism. The South Africa Centre is the most species‐rich region and the largest centre of endemism for Kniphofia. The phenetic analysis of the South Africa Centre at the full degree square scale recovered three biogeographical areas that correspond with the subcentres obtained from the chorological analysis. The PAE (at the full degree square scale) and the mapping of range‐restricted taxa recovered two and six areas of endemism (AOEs), respectively. These latter two approaches produced results of limited value, possibly as a result of inadequate collecting of Kniphofia species. Only two AOEs were identified by PAE and these are embedded within two of the six AOEs recovered by the mapping of range‐restricted taxa. All the above AOEs are within the three subcentres found by chorological and phenetic analysis (at the full degree square scale) for the South Africa Centre. Main conclusions The centres for Kniphofia broadly correspond to the Afromontane regional mountain systems, but with some notable differences. We regard Kniphofia as a floristic indicator of the Afromontane Region sensu lato. In southern Africa, the phenetic approach at the full‐degree scale retrieved areas that correlate well with those obtained by the chorological approach.  相似文献   

2.
3.
Abstract. Two 10-metre cores were analysed and a 37,500 year pollen stratigraphy was established for Lake Mala?i. A lowstand from 37,500 to 35,900 BP indicates extremely dry conditions. From 35,900 to 34,000 BP montane forests were widespread indicating cold, moist climate. Between 34,000 and 26,400 BP warm and dry conditions prevailed and forest area decreased. During the Last Glacial Maximum montane forest was widespread in the catchment, although woodlands apparently persisted at low altitudes: the expansion of the montane forest indicates that the aridity that affected equatorial Africa during this time period did not affect the Lake Mala?i Catchment. The cold and relatively moist conditions during the Late Pleistocene probably allowed biotic interchange between the highlands of East and West Africa via the highlands along the Zaire—Zambezi watershed and among now-isolated islands of Afromontane vegetation in the Lake Mala?i catchment. The Holocene is characterized by climate and vegetation quite similar to today, with indications of slightly wetter conditions between 6150 and 3000 bp and slightly drier conditions between 8000 and 6150 bp . The low percentages of montane forest pollen throughout the Holocene support the hypothesis that the montane grasslands of Mala?i are not recently anthropogenic.  相似文献   

4.
The evolutionary history of the Mexican sierras has been shaped by various geological and climatic events over the past several million years. The relative impacts of these historical events on diversification in highland taxa, however, remain largely uncertain owing to a paucity of studies on broadly‐distributed montane species. We investigated the origins of genetic diversification in widely‐distributed endemic alligator lizards in the genus Barisia to help develop a better understanding of the complex processes structuring biological diversity in the Mexican highlands. We estimated lineage divergence dates and the diversification rate from mitochondrial DNA sequences, and combined divergence dates with reconstructions of ancestral geographical ranges to track lineage diversification across geography through time. Based on our results, we inferred ten geographically structured, well supported mitochondrial lineages within Barisia. Diversification of a widely‐distributed ancestor appears tied to the formation of the Trans‐Mexican Volcanic Belt across central Mexico during the Miocene and Pliocene. The formation of filter barriers such as major river drainages may have later subdivided lineages. The results of the present study provide additional support for the increasing number of studies that suggest Neogene events heavily impacted genetic diversification in widespread montane taxa. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 382–394.  相似文献   

5.
Question: How does the floristic diversity of Afromontane rainforests change along an altitudinal gradient? What are the implications for conservation planning in these strongly fragmented forest areas that form part of the Eastern Afromontane Biodiversity Hotspot? Location: Bonga, southwestern Ethiopia. Methods: Based on evidence from other montane forests, we hypothesized that altitude has an effect on the floristic diversity of Afromontane rainforests in southwestern Ethiopia. To test this hypothesis, detailed vegetation surveys were carried out in 62 study plots located in four relatively undisturbed forest fragments situated at altitudes between 1600 m and 2300 m. Floristic diversity was evaluated using a combination of multivariate statistical analyses and diversity indices. Results: Ordination and indicator species analyses showed gradual variations in floristic diversity along the altitudinal gradient with a pronounced shift in species composition at ca. 1830 m. Upper montane forest (>1830 m) is characterized by high fern diversity and indicator species that are Afromontane endemics. Lower montane forest (<1830 m) exhibits a greater diversity of tree species and a higher abundance of the flagship species Coffea arabica. Conclusions: Our results provide crucial ecological background information concerning the montane rainforests of Ethiopia, which have been poorly studied until now. We conclude that both forest types identified during this study need to be considered for conservation because of their particular species compositions. Owing to the high degree of forest fragmentation, conservation concepts should consider a multi‐site approach with at least two protected areas at different altitudinal levels.  相似文献   

6.
The rich Levantine fauna and flora were shaped by millions of years of migration across the region, from Africa to Eurasia and vice versa. Most large-scale processes that led to this diversity have been relatively well studied. However, small-scale processes, and details such as the area of origin of particular groups, and the route and time of dispersal are often not as clear. This is the case with the endemic Levantine representatives of the fish family Cichlidae. In this work we combine genetic, palaeontological and geological data in an attempt to understand the dispersal of the cichlid fish Astatotilapia flaviijosephi (Lortet, 1883) from sub-Saharan Africa to the Levant. A. flaviijosephi is unique among the Levantine cichlids in being the only non-tilapiine. It is also the only haplochromine cichlid to be found out of Africa. A partial sequence of the control region of the mitochondrial DNA was used to determine A. flaviijosephi 's phylogenetic relationships with other African haplochromines, and to estimate its time of divergence from this group. Combining our findings with palaeontological and geological data, we suggest that A. flaviijosephi separated from the other haplochromines during the middle to late Pliocene (2.5–3.3 Mya) and probably dispersed from Africa to the Levant via the Nile.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 103–109.  相似文献   

7.
Fire is known to have dramatic consequences on forest ecosystems around the world and on the livelihoods of forest‐dependent people. While the Eastern Ghats of India have high abundances of fire‐prone dry tropical forests, little is known about how fire influences the diversity, composition, and structure of these communities. Our study aimed to fill this knowledge gap by examining the effects of the presence and the absence of recent fire on tropical dry forest communities within the Kadiri watershed, Eastern Ghats. We sampled plots with and without evidence of recent fire in the Eswaramala Reserve Forest in 2008 and 2018. Our results indicate that even though stem density increases in the recently burned areas, species richness is lower because communities become dominated by a few species with fire resistance and tolerance traits, such as thick bark and clonal sprouting. Further, in the presence of fire, the size structure of these fire‐tolerant species shifts toward smaller‐sized, resprouting individuals. Our results demonstrate that conservation actions are needed to prevent further degradation of forests in this region and the ecosystem services they provide.  相似文献   

8.
9.
The megadiverse genus Carex (c. 2000 species, Cyperaceae) has a nearly cosmopolitan distribution, displaying an inverted latitudinal richness gradient with higher species diversity in cold‐temperate areas of the Northern Hemisphere. Despite great expansion in our knowledge of the phylogenetic history of the genus and many molecular studies focusing on the biogeography of particular groups during the last few decades, a global analysis of Carex biogeography and diversification is still lacking. For this purpose, we built the hitherto most comprehensive Carex‐dated phylogeny based on three markers (ETS–ITS–matK), using a previous phylogenomic Hyb‐Seq framework, and a sampling of two‐thirds of its species and all recognized sections. Ancestral area reconstruction, biogeographic stochastic mapping, and diversification rate analyses were conducted to elucidate macroevolutionary biogeographic and diversification patterns. Our results reveal that Carex originated in the late Eocene in E Asia, where it probably remained until the synchronous diversification of its main subgeneric lineages during the late Oligocene. E Asia is supported as the cradle of Carex diversification, as well as a “museum” of extant species diversity. Subsequent “out‐of‐Asia” colonization patterns feature multiple asymmetric dispersals clustered toward present times among the Northern Hemisphere regions, with major regions acting both as source and sink (especially Asia and North America), as well as several independent colonization events of the Southern Hemisphere. We detected 13 notable diversification rate shifts during the last 10 My, including remarkable radiations in North America and New Zealand, which occurred concurrently with the late Neogene global cooling, which suggests that diversification involved the colonization of new areas and expansion into novel areas of niche space.  相似文献   

10.
Aim The tropical Andes are a world biodiversity hotspot. With diverse biomes and dramatic, geologically recent mountain uplift, they offer a system to study the relative contributions of geological and biome history to species richness. There are preliminary indications that historical species assembly in the Andes has been influenced by physiographical heterogeneity and that distinct biomes have evolved in relative isolation despite physical proximity. Here we test this ‘Andean biotic separation hypothesis’ by focusing on the low‐elevation, seasonally dry tropical forest (SDTF) biome to determine whether patterns of plant diversification within the SDTF differ from those in mid‐ and high‐elevation biomes. Location Tropical Andes, South America. Methods Densely sampled time‐calibrated phylogenies for five legume genera (Amicia, Coursetia, Cyathostegia, Mimosa and Poissonia) containing species endemic to the Andean SDTF biome were used to investigate divergence times and levels of geographical structure. Geographical structure was measured using isolation‐by‐distance methods. Meta‐analysis of time‐calibrated phylogenies of Andean plant groups was used to compare the pattern and tempo of endemic species diversification between the major Andean biomes. Results Long‐term persistence of SDTF in the Andes is suggested by old stem ages (5–27 Ma) of endemic genera/clades within genera, and deep divergences coupled with strong geographical structure among and within species. Comparison of species diversification patterns among different biomes shows that the relatively old, geographically confined pattern of species diversification in SDTF contrasts with the high‐elevation grasslands that show rapid and recent radiations driven by ecological opportunities. Main conclusions The SDTF biome has a long history in the Andes. We suggest that the diverse SDTF flora has been assembled gradually over the past c. 19 Ma from lineages exhibiting strong phylogenetic niche conservatism. These patterns suggest that Andean SDTFs have formed stable and strongly isolated ‘islands’ despite the upheavals of Andean uplift. Indeed, the Andean SDTFs may represent some of the most isolated and evolutionarily persistent continental plant communities, similar in many respects to floras of remote oceanic islands.  相似文献   

11.
We gathered molecular data to assess phylogenetic and phylogeographic patterns for widespread lineages of Neotropical forest falcons in the genus Micrastur to: 1) investigate the comparative phylogeography of four species from the M. ruficollis complex (M. ruficollis, M. gilvicollis, M. plumbeus and M. mintoni), to identify the temporal and spatial context of the group's diversification; and 2) to reevaluate, based on molecular characters, the taxonomic status and interspecific boundaries within this complex. Molecular phylogenies were based on sequences of the mitochondrial genes ND2 and Cyt b and the nuclear genes FIB5 and MUSK from 119 specimens, including M. mirandollei and M. semitorquatus as outgroups. The phylogenetic trees obtained by BI and a Species Tree analysis recovered the monophyly of currently accepted species belonging to the M. ruficollis complex. The dates in our tree indicate that the separation of species within the complex occurred 2–4 million yr ago, initiating during the Neogene (Pliocene). However, when compared to most such widely distributed Neotropical lineages, the diversification within the M. ruficollis complex appears more recent (i.e. centered in the Late Pleistocene). Our results demonstrate the existence of eleven geographic lineages (subclades) in M. ruficollis, M. gilvicollis and M. mintoni, which differ genetically from each other and therefore can be interpreted as distinct evolutionary lineages and possibly separate species under lineage‐based species concepts. However, BPP results failed to recognize with strong statistical support any of these subclades as distinct species. Distinct subclades in the M. ruficollis complex are limited by the principal tributaries of the Amazon River and the Andes, suggesting that these modern barriers limit gene flow and thereby could have promoted differentiation mostly during the Pleistocene. However, our results indicate widely disparate responses to individual barriers across subclades, supporting lineage‐specific histories throughout the Neotropics.  相似文献   

12.
The predominantly austral genus Schoenus L. is the largest genus in tribe Schoeneae and one of the ten most species-rich Cyperaceae genera, with over 150 accepted species found mostly in Australia, New Zealand, southeast Asia, and southern Africa. Here, we use data based on two nuclear and three plastid DNA regions to present one of the most comprehensive phylogenetic reconstructions of a genus in Cyperaceae to date, covering over 70% of described species of Schoenus. After recent taxonomic realignments in the last 4 years have both added and removed species from the genus, we show that Schoenus is now monophyletic. In addition, our results indicate that Schoenus originated in Western Australia in the Paleocene and eventually dispersed to surrounding continents, but rarely back. The diversification rate of the genus appears to have slightly decreased over time, and there has not been an increase associated with the establishment of the Cape clade endemic to the sclerophyllous fynbos vegetation type, such as has been reported in other plant lineages endemic to the Cape region. These results will serve as a template to understanding the complex patterns of genome size evolution and to untangle drivers of diversification in this genus.  相似文献   

13.
14.
15.
Aim The Kakamega Forest, western Kenya, has been biogeographically assigned to both lowland and montane forest biomes, or has even been considered to be unique. Most frequently it has been linked with the Guineo‐Congolian rain forest block. The present paper aims to test six alternative hypotheses of the zoogeographical relationships between this forest remnant and other African forests using reptiles as a model group. Reptiles are relatively slow dispersers, compared with flying organisms (Aves and Odonata) on which former hypotheses have been based, and may thus result in a more conservative biogeographical analysis. Location Kakamega Forest, Kenya, Sub‐Saharan Africa. Methods The reptile diversity of Kakamega Forest was evaluated by field surveys and data from literature resources. Faunal comparisons of Kakamega Forest with 16 other African forests were conducted by the use of the ‘coefficient of biogeographic resemblance’ using the reptile communities as zoogeographic indicators. Parsimony Analysis of Endemism and Neighbour Joining Analysis of Endemism were used to generate relationship trees based on an occurrence matrix with paup *. Results The analysis clearly supports the hypothesis that the Kakamega Forest is the easternmost fragment of the Guineo‐Congolian rain forest belt, and thus more closely related to the forests of that Central–West African complex than to any forest further east, such as the Kenyan coastal forests. Many Kenyan reptile species occur exclusively in the Kakamega Forest and its associated forest fragments. Main conclusions The Kakamega Forest is the only remnant of the Guineo‐Congolian rain forest in the general area. We assume that the low degree of resemblance identified for the Guineo‐Congolian forest and the East African coastal forest reflect the long history of isolation of the two forest types from each other. Kenyan coastal forests may have been historically connected through forest ‘bridges’ of the southern highlands with the Congo forest belt, allowing reptile species to migrate between them. The probability of a second ‘bridge’ located in the region of southern Tanzanian inselbergs is discussed. Although not particularly rich in reptile species, the area should be considered of high national priority for conservation measures.  相似文献   

16.
17.
18.
Aim This study investigates how estimated tree aboveground biomass (AGB) of tropical montane rain forests varies with elevation, and how this variation is related to elevational change in floristic composition, phylogenetic community structure and the biogeography of the dominant tree taxa. Location Lore Lindu National Park, Sulawesi, Indonesia. Methods Floristic inventories and stand structural analyses were conducted on 13 plots (each 0.24 ha) in four old‐growth forest stands at 1050, 1400, 1800 and 2400 m a.s.l. (submontane to upper montane elevations). Tree AGB estimates were based on d.b.h., height and wood specific gravity. Phylogenetic diversity and biogeographical patterns were analysed based on tree family composition weighted by AGB. Elevational trends in AGB were compared with other Southeast Asian and Neotropical transect studies (n = 7). Results AGB was invariant from sub‐ to mid‐montane elevation (309–301 Mg ha?1) and increased slightly to 323 Mg ha?1 at upper montane elevation. While tree and canopy height decreased, wood specific gravity increased. Magnoliids accounted for most of the AGB at submontane elevations, while eurosids I (including Fagaceae) contributed substantially to AGB at all elevations. Phylogenetic diversity was highest at upper montane elevations, with co‐dominance of tree ferns, Podocarpaceae, Trimeniaceae and asterids/euasterids II, and was lowest at lower/mid‐montane elevations, where Fagaceae contributed > 50% of AGB. Biogeographical patterns showed a progression from dominant tropical families at submontane to tropical Fagaceae (Castanopsis, Lithocarpus) at lower/mid‐montane, and to conifers and Australasian endemics at upper montane elevations. Cross‐continental comparisons revealed an elevational AGB decrease in transects with low/no presence of Fagaceae, but relatively high AGB in montane forests with moderate to high abundance of this family. Main conclusions AGB is determined by both changes in forest structure and shifts in species composition. In our study, these two factors traded off so that there was no net change in AGB, even though there were large changes in forest structure and composition along the elevational gradient. Southeast Asian montane rain forests dominated by Fagaceae constitute important carbon stocks. The importance of biogeography and species traits for biomass estimation should be considered by initiatives to reduce emissions from deforestation and forest degradation (REDD) and in taxon choice in reforestation for carbon offsetting.  相似文献   

19.
South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority.  相似文献   

20.

Aim

Central Africa shelters diverse and iconic megafauna, which is threatened by climate and land-use changes and increased hunting-induced defaunation. Though crucial for coordinating regional conservation actions, how species assemblages are spatially structured remains poorly understood. This study aims to fill this knowledge gap for mammals across central African forests.

Location

Tropical moist forests from Nigeria to the Albertine Rift.

Methods

An extensive compilation of forest-dwelling mammal species lists was made from wildlife and bushmeat-related surveys across central Africa. A beta-diversity approach enabling the clustering of surveys composed of similar species was implemented to identify and delimit zoogeographic districts, separately for three well-documented mammal orders: carnivores, primates and artiodactyls. Random forest classification models were then used to identify the environmental determinants of the district's distribution and to produce a continuous zoogeographic map (and associated uncertainties) critical to assess the conservation status of each district and their ongoing threats.

Results

While carnivores do not present a clear spatial structure within central African forests, our findings highlight the structuring role of rivers on both primate and artiodactyl assemblages' distributions. We retained eight and six spatially congruent districts for primates and artiodactyls, respectively. These districts were shaped by the Ubangi-Congo River system, and the Cross and Sanaga Rivers, with a secondary role of insularity and precipitation identified for primates. Highly threatened districts were highlighted, especially in Nigeria and in the Democratic Republic of Congo, the latter including vast areas that are understudied and poorly represented in the protected area network.

Main Conclusions

Beyond refining our understanding of the diversity and uniqueness of mammalian assemblages across central African forests, our map of zoogeographic districts has far-reaching implications for the conservation of highly threatened taxa, allowing to target species and areas of interest for further sampling, conservation and rewilding efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号