首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During field surveys in 2015, a phytoplasma‐associated disease was identified in Narcissus tazetta plants in Behbahan, Iran. The characteristic symptoms were phyllody and virescence. The presence of phytoplasma in symptomatic plants was confirmed using PCR amplification and sequencing of 16S rRNA, tuf, secY and vmp1 genes. Based on the blastn results, the sequences of 16S rRNA, tuf, secY and vmp1 genes shared, respectively, 99%, 100%, 99% and 99% sequence identity with phytoplasma strains in 16SrXII‐A subgroup. RFLP and phylogenetic analyses using the sequences of 16S rRNA, tuf and secY genes confirmed the assortment of studied strains to 16SrXII‐A phytoplasma subgroup. Sequence comparison of these four genes revealed that all the sequences of 28 strains studied were identical. To the best of our knowledge, the association of “Candidatus Phytoplasma solani” with N. tazetta was demonstrated for the first time in the world.  相似文献   

2.
3.
4.
Primula acaulis (L.) Hill. plants showing stunting, leaf‐yellowing and virescence were first discovered in the Czech Republic. Polymerase chain reactions with subsequent restriction fragment length polymorphism analyses and sequencing enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐B, tufI‐B, rpI‐B, groELIB‐III and SecY‐IB subgroups. Phylogeny of the 16S rRNA gene sequences as well as sequence analysis of several chromosomal regions, such as the 16S‐23S ribosomal operon, ribosomal proteins, spc ribosomal protein operon, genes for elongation factor EF‐Tu, molecular chaperonin large subunit GroEL, immunodominant membrane protein, ribosome recycling factor, urydilate kinase, ATP‐ and Zn2+‐dependent proteases not only confirmed its affiliation with the ‘Candidatus Phytoplasma asteris’ species but also enabled its detailed molecular characterization. The less researched regions of phytoplasma genome (amp, adk, hflB, pyrHfrr genes) could be valuable as additional markers for phytoplasma through differentiation especially within the 16SrI‐B ribosomal subgroup.  相似文献   

5.
The phylogenies derived from housekeeping gene sequence alignments, although mere evolutionary hypotheses, have increased our knowledge about the Aeromonas genetic diversity, providing a robust species delineation framework invaluable for reliable, easy and fast species identification. Previous classifications of Aeromonas, have been fully surpassed by recently developed phylogenetic (natural) classification obtained from the analysis of so‐called ‘molecular chronometers’. Despite ribosomal RNAs cannot split all known Aeromonas species, the conserved nature of 16S rRNA offers reliable alignments containing mosaics of sequence signatures which may serve as targets of genus‐specific oligonucleotides for subsequent identification/detection tests in samples without culturing. On the contrary, some housekeeping genes coding for proteins show a much better chronometric capacity to discriminate highly related strains. Although both, species and loci, do not all evolve at exactly the same rate, published Aeromonas phylogenies were congruent to each other, indicating that, phylogenetic markers are synchronized and a concatenated multigene phylogeny, may be ‘the mirror’ of the entire genomic relationships. Thanks to MLPA approaches, the discovery of new Aeromonas species and strains of rarely isolated species is today more frequent and, consequently, should be extensively promoted for isolate screening and species identification. Although, accumulated data still should be carefully catalogued to inherit a reliable database.  相似文献   

6.
Ribosome biogenesis involves a large ensemble of trans‐acting factors, which catalyse rRNA processing, ribosomal protein association and ribosomal subunit assembly. The circularly permuted GTPase Lsg1 is such a ribosome biogenesis factor, which is involved in maturation of the pre‐60S ribosomal subunit in yeast. We identified two orthologues of Lsg1 in Arabidopsis thaliana. Both proteins differ in their C‐terminus, which is highly charged in atLSG1‐2 but missing in atLSG1‐1. This C‐terminus of atLSG1‐2 contains a functional nuclear localization signal in a part of the protein that also targets atLSG1‐2 to the nucleolus. Furthermore, only atLSG1‐2 is physically associated with ribosomes suggesting its function in ribosome biogenesis. Homozygous T‐DNA insertion lines are viable for both LSG1 orthologues. In plants lacking atLSG1‐2 18S rRNA precursors accumulate and a 20S pre‐rRNA is detected, while the amount of pre‐rRNAs that lead to the 25S and 5.8S rRNA is not changed. Thus, our results suggest that pre‐60S subunit maturation is important for the final steps of pre‐40S maturation in plants. In addition, the lsg1‐2 mutants show severe developmental defects, including triple cotyledons and upward curled leaves, which link ribosome biogenesis to early plant and leaf development.  相似文献   

7.
Life can thrive in extreme environments where inhospitable conditions prevail. Organisms which resist, for example, acidity, pressure, low or high temperature, have been found in harsh environments. Most of them are bacteria and archaea. The bacterium Deinococcus radiodurans is considered to be a champion among all living organisms, surviving extreme ionizing radiation levels. We have discovered a new extremophile eukaryotic organism that possesses a resistance to ionizing radiations similar to that of D. radiodurans. This microorganism, an autotrophic freshwater green microalga, lives in a peculiar environment, namely the cooling pool of a nuclear reactor containing spent nuclear fuels, where it is continuously submitted to nutritive, metallic, and radiative stress. We investigated its morphology and its ultrastructure by light, fluorescence and electron microscopy as well as its biochemical properties. Its resistance to UV and gamma radiation was assessed. When submitted to different dose rates of the order of some tens of mGy · h?1 to several thousands of Gy · h?1, the microalga revealed to be able to survive intense gamma‐rays irradiation, up to 2,000 times the dose lethal to human. The nuclear genome region spanning the genes for small subunit ribosomal RNA‐Internal Transcribed Spacer (ITS) 1‐5.8S rRNA‐ITS2‐28S rRNA (beginning) was sequenced (4,065 bp). The phylogenetic position of the microalga was inferred from the 18S rRNA gene. All the revealed characteristics make the alga a new species of the genus Coccomyxa in the class Trebouxiophyceae, which we name Coccomyxa actinabiotis sp. nov.  相似文献   

8.
Apium graveolens L. plants showing stunting, purplish/whitening of new leaves, flower abnormalities and bushy tops were observed in South Bohemia (Czech Republic) during 2011 and 2012. Transmission electron microscopy observations showed phytoplasmas in phloem sieve tube elements of symptomatic but not healthy plants. Polymerase chain reactions with universal and group‐specific phytoplasma primers followed by restriction fragment length polymorphism analyses and sequencing of 16S rDNA enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐C. Identical analyses of the ribosomal protein genes rpl22 and rps3 were used for further classification and revealed affiliation of the phytoplasmas with the rpIC subgroups. This is the first report of naturally occurring clover phyllody phytoplasma in A. graveolens in both the Czech Republic and worldwide.  相似文献   

9.
Prokaryotic Nostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free‐living Nostoc sampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity for Nostoc sampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related to Nostoc punctiforme PCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteria Geitlerinemia, Oscillatoria, Phormidium, and an uncultured taxon were detected only by 16S rRNA gene; Gloeobacter and Pseudanabaena were detected using 16S and 23S; and Phormididesmis, Neosynechococcus, Symphothece, Aphanizomenon, Nodularia, Spirulina, Nodosilinea, Synechococcus, Cyanobium, and Anabaena (the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green alga Chaetosphaeridium globosum was detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.  相似文献   

10.
Symptoms of unknown aetiology on Rhododendron hybridum cv. Cunningham's White were observed in the Czech Republic in 2010. The infected plant had malformed leaves, with irregular shaped edges, mosaic, leaf tip necrosis and multiple axillary shoots with smaller leaves. Transmission electron microscopy showed phytoplasma‐like bodies in phloem cells of the symptomatic plant. Phytoplasma presence was confirmed by polymerase chain reaction using phytoplasma‐specific, universal and group‐specific primer pairs. Restriction fragment length polymorphism analysis of 16S rDNA enabled classification of the detected phytoplasma into the aster yellows subgroup I‐C. Sequence analysis of the 16S‐23S ribosomal operon of the amplified phytoplasma genome from the infected rhododendron plant (1724 bp) confirmed the closest relationship with the Czech Echinacea purpurea phyllody phytoplasma. These data suggest Rhododendron hybridum is a new host for the aster yellows phytoplasma subgroup 16SrI‐C in the Czech Republic and worldwide.  相似文献   

11.
Periphyton dominated by the cellulose‐rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N‐fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C‐cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry.  相似文献   

12.
Correct identification of the microsporidia, Nosema apis and Nosema ceranae, is key to the study and control of Nosema disease of honey bees (Apis mellifera). A rapid DNA extraction method combined with multiplex PCR to amplify the 16S rRNA gene with species-specific primers was compared with a previously published assay requiring spore-germination buffer and a DNA extraction kit. When the spore germination-extraction kit method was used, 10 or more bees were required to detect the pathogens, whereas the new extraction method made it possible to detect the pathogens in single bees. Approx. 4-8 times better detection of N. ceranae was found with the new method compared to the spore germination-extraction kit method. In addition, the time and cost required to process samples was lower with the proposed method compared to using a kit. Using the new DNA extraction method, a spore quantification procedure was developed using a triplex PCR involving co-amplifying the N. apis and N. ceranae 16S rRNA gene with the ribosomal protein gene, RpS5, from the honey bee. The accuracy of this semi-quantitative PCR was determined by comparing the relative band intensities to the number of spores per bee determined by microscopy for 23 samples, and a high correlation (R2 = 0.95) was observed. This method of Nosema spore quantification revealed that spore numbers as low as 100 spores/bee could be detected by PCR. The new semi-quantitative triplex PCR assay is more sensitive, economical, rapid, simple, and reliable than previously published standard PCR-based methods for detection of Nosema and will be useful in laboratories where real-time PCR is not available.  相似文献   

13.
Nosema apis and Nosema ceranae are microsporidian parasite worldwide spread causing an emerging infectious disease of European honeybee Apis mellifera. The Nosema presence was deeply investigated in several countries but low information are presents about islands. In this investigation was evaluated the presence N. ceranae and N. apis in apiaries located in Tuscanian Archipelago islands (Central Italy). For N. ceranae detection, two different Real-Time PCR (qPCR) methods, the 16S rRNA and Hsp70 gene amplification qPCR, were performed on honey bee samples; while, for N. apis only the 16S rRNA qPCR amplification was performed. On all islands, only N. ceranae was present, while N. apis was not found in the samples. The two qPCR showed significant difference (p < 0.040) in N. ceranae spores quantification. The single-copy Hsp70 gene method qPCR assay systematically detected a lower amount of N. ceranae copies compared to the multi-copy 16S rRNA gene method.  相似文献   

14.
Twenty‐six strains morphologically identified as Cylindrospermum as well as the closely related taxon Cronbergia siamensis were examined microscopically as well as phylogenetically using sequence data for the 16S rRNA gene and the 16S‐23S internal transcribed spacer (ITS) region. Phylogenetic analysis of the 16S rRNA revealed three distinct clades. The clade we designate as Cylindrospermum sensu stricto contained all five of the foundational species, C. maius, C. stagnale, C. licheniforme, C. muscicola, and C. catenatum. In addition to these taxa, three species new to science in this clade were described: C. badium, C. moravicum, and C. pellucidum. Our evidence indicated that Cronbergia is a later synonym of Cylindrospermum. The phylogenetic position of Cylindrospermum within the Nostocaceae was not clearly resolved in our analyses. Cylindrospermum is unusual among cyanobacterial genera in that the morphological diversity appears to be more evident than sequence divergence. Taxa were clearly separable using morphology, but had very high percent similarity among ribosomal sequences. Given the high diversity we noted in this study, we conclude that there is likely much more diversity remaining to be described in this genus.  相似文献   

15.
We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2‐cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria‐associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus‐associated protein, and its loss leads to the apoptosis before blastocyst formation in mice.  相似文献   

16.
Host‐restricted lineages of gut bacteria often include many closely related strains, but this fine‐scale diversity is rarely investigated. The specialized gut symbiont Snodgrassella alvi has codiversified with honeybees (Apis mellifera) and bumblebees (Bombus) for millions of years. Snodgrassella alvi strains are nearly identical for 16S rRNA gene sequences but have distinct gene repertoires potentially affecting host biology and community interactions. We examined S. alvi strain diversity within and between hosts using deep sequencing both of a single‐copy coding gene (minD) and of the V4 region of the 16S rRNA gene. We sampled workers from domestic and feral A. mellifera colonies and wild‐caught Bombus representing 14 species. Conventional analyses of community profiles, based on the V4 region of the 16S rRNA gene, failed to expose most strain variation. In contrast, the minD analysis revealed extensive strain variation within and between host species and individuals. Snodgrassella alvi strain diversity is significantly higher in A. mellifera than in Bombus, supporting the hypothesis that colony founding by swarms of workers enables retention of more diversity than colony founding by a single queen. Most Bombus individuals (72%) are dominated by a single S. alvi strain, whereas most A. mellifera (86%) possess multiple strains. No S. alvi strains are shared between A. mellifera and Bombus, indicating some host specificity. Among Bombus‐restricted strains, some are restricted to a single host species or subgenus, while others occur in multiple subgenera. Findings demonstrate that strains diversify both within and between host species and can be highly specific or relatively generalized in their host associations.  相似文献   

17.
18.
Molecular assessment of a large portion of traditional cyanobacterial taxa has been hindered by the failure to isolate and grow them in culture. In this study, we developed an optimized protocol for single cell/filament isolation and 16S rRNA gene sequencing of terrestrial cyanobacteria with large mucilaginous sheaths, and applied it to determine the phylogenetic position of typical members of the genera Petalonema and Stigonema. A methodology based on a glass‐capillary isolation technique and a semi‐nested PCR protocol enabled reliable sequencing of the 16S rRNA gene from all samples analyzed. Ten samples covering seven species of Stigonema from Europe, North and Central America, and Hawaii, and the type species of Petalonema from Slovakia were sequenced. Contrary to some previous studies, which proposed a relationship with heteropolar nostocalean cyanobacteria, Petalonema appeared to belong to the family Scytonemataceae. Analysis of Stigonema specimens recovered a unique coherent phylogenetic cluster, substantially broadening our knowledge of the molecular diversity within this genus. Neither the uni‐ to biseriate species nor the multiseriate species formed monophyletic subclusters within the genus. Typical multiseriate species of Stigonema clustered in a phylogenetic branch derived from uni‐ to biseriate S. ocellatum Thuret ex Bornet & Flahault in our analysis, suggesting that species with more complex thalli may have evolved from the more simple ones. We propose the technique tested in this study as a promising tool for a future revision of the molecular taxonomy in cyanobacteria.  相似文献   

19.
Ninety‐two strains of Microcoleus vaginatus (=nomenclatural‐type species of the genus Microcoleus Desmazières ex Gomont) and Phormidium autumnale Trevisan ex Gomont from a wide diversity of regions and biotopes were examined using a combination of morphological and molecular methods. Phylogenies based on the 16S rDNA and 16S‐23S ITS (partial) demonstrated that the 92 strains, together with a number of strains in GenBank, were members of a highly supported monophyletic clade of strains (Bayesian posterior probability = 1.0) distant from the species‐cluster containing the generitype of Phormidium. Similarity of the 16S rRNA gene exceeded 95.5% among all members of the Microcoleus clade, but was less than 95% between any Microcoleus strains and species outside of the clade (e.g., Phormidium sensu stricto). These findings, which are in agreement with earlier studies on these taxa, necessitate the revision of Microcoleus to include P. autumnale. Furthermore, the cluster of Phormidium species in the P. autumnale group (known as Group VII) must be moved into Microcoleus as well, and these nomenclatural transfers are included in this study. The main diacritical characters defining Microcoleus are related to the cytomorphology of trichomes, including: narrowed trichome ends, calyptra, cells shorter than wide up to more or less isodiametric, and facultative presence of sheaths. The majority of species are 4–10 μm in diameter. The possession of multiple trichomes in a common sheath is present facultatively in many but not all species.  相似文献   

20.
Wolbachia is the most prevalent symbiont described in arthropods to date. Wolbachia can manipulate host reproduction, provide nutrition to insect hosts and protect insect hosts from pathogenic viruses. So far, 13 supergroups of Wolbachia have been identified. The whitefly Bemisia tabaci is a complex containing more than 28 morphologically indistinguishable cryptic species. Some cryptic species of this complex are invasive. In this study, we report a comprehensive survey of Wolbachia in B. tabaci and its relative B. afer from 1658 insects representing 54 populations across 13 provinces of China and one state of Australia. Based on the results of PCR or sequencing of the 16S rRNA gene, the overall rates of Wolbachia infection were 79.6% and 0.96% in the indigenous and invasive Bemisia whiteflies, respectively. We detected a new Wolbachia supergroup by sequencing five molecular marker genes including 16S rRNA, groEL, gltA, hcpA, and fbpA genes. Data showed that many protein‐coding genes have limitations in detecting and classifying newly identified Wolbachia supergroups and thus raise a challenge to the known Wolbachia MLST standard analysis system. Besides, the other Wolbachia strains detected from whiteflies were clustered into supergroup B. Phylogenetic trees of whitefly mitochondrial cytochrome oxidase subunit I and Wolbachia multiple sequencing typing genes were not congruent. In addition, Wolbachia was also detected outside the special bacteriocytes in two cryptic species by fluorescence in situ hybridization, indicating the horizontal transmission of Wolbachia. Our results indicate that members of Wolbachia are far from well explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号