首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75–95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50–90% of the genome. Africanized honeybees are considered undesirable for bee‐keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas.  相似文献   

3.
    
Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine–freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome‐wide SNP data sets hold for resolving patterns and processes underlying recent adaptive divergences.  相似文献   

4.
    
Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single‐nucleotide polymorphism (SNP)‐based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost‐effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring.  相似文献   

5.
    
Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide.  相似文献   

6.
家蚕微孢子虫(Nosema bombycis)是蚕业生产上一种重要病害——微粒子病的病原体。探讨家蚕微孢子虫种内的遗传多样性,可为云南蚕区家蚕微粒子病的防控提供参考依据。从云南省不同养蚕地区收集了感染微孢子虫的病蚕样品,分离纯化家蚕微孢子虫并提取基因组,克隆SSU rDNA(small subunit ribosomal DNA)和ITS(internal transcribed spacer)序列并进行生物信息学分析。结果发现,云南蚕区Nosema bombycis 分离株SSU rDNA序列同源性高达99%以上,遗传距离小于0.006,它们在长度和多个位点存在差异,呈现不同程度的多态性;ITS遗传差异较为显著,序列中存在多碱基的插入或缺失、单碱基的转换和颠换。基于SSU rDNA和rDNA-ITS序列构建系统发生树,结果显示,云南蚕区家蚕微孢子虫分离株系间存在遗传分化,种群间亲缘关系与地理位置无直接联系。研究结果丰富了云南蚕区家蚕微孢子虫的种内遗传多样性。  相似文献   

7.
8.
    
Recent major losses of managed honeybee, Apis mellifera, colonies at a global scale have resulted in a multitude of research efforts to identify the underlying mechanisms. Numerous factors acting singly and/or in combination have been identified, ranging from pathogens, over nutrition to pesticides. However, the role of apiculture in limiting natural selection has largely been ignored. This is unfortunate, because honeybees are more exposed to environmental stressors compared to other livestock and management can severely compromise bee health. Here, we briefly review apicultural factors that influence bee health and focus on those most likely interfering with natural selection, which offers a broad range of evolutionary applications for field practice. Despite intense breeding over centuries, natural selection appears to be much more relevant for the health of managed A. mellifera colonies than previously thought. We conclude that sustainable solutions for the apicultural sector can only be achieved by taking advantage of natural selection and not by attempting to limit it.  相似文献   

9.
10.
11.
    
Myxomycetes or plasmodial slime molds are widespread and very common soil amoebae with the ability to form macroscopic fruiting bodies. Even if their phylogenetic position as a monophyletic group in Amoebozoa is well established, their internal relationships are still not entirely resolved. At the base of the most intensively studied dark‐spored clade lies the order Echinosteliales, whose highly divergent small subunit ribosomal (18S) RNA genes represent a challenge for phylogenetic reconstructions. This is because they are characterized by unusually long variable helices of unknown secondary structure and a high inter‐ and infraspecific divergence. Current classification recognizes two families: the monogeneric Echinosteliaceae and the Clastodermataceae with the genera Barbeyella and Clastoderma. To better resolve the phylogeny of the Echinosteliales, we obtained three new small subunit ribosomal (18S) RNA gene sequences of Clastoderma and Echinostelium corynophorum. Our phylogenetic analyses suggested the polyphyly of the family Clastodermataceae, as Barbeyella was more closely related to Echinostelium arboreum than to Clastoderma, while Clastoderma debaryanum was the earliest branching clade in Echinosteliales. We also found that E. corynophorum was the closest relative of the enigmatic Semimorula liquescens, a stalkless‐modified Echinosteliales. We discuss possible evolutionary pathways in dark‐spored Myxomycetes and propose a taxonomic update.  相似文献   

12.
    
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] genetic diversity may be the key to responding to novel health challenges faced by this important pollinator. In this study, we first compared colonies of four honey bee races, A. m. anatoliaca, A. mcarnica, A. m. caucasica, and A. msyriaca from Turkey, with respect to honey storage, bee population size, and defenses against varroa. The mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is an important pest of honey bee colonies. There are genetic correlates with two main defenses of bees against this parasite: hygienic behavior, or removing infested brood, and grooming, which involves shaking and swiping off mites and biting them. In the second part of this study, we examined the relationship of these two types of defenses, hygiene and grooming, and their correlation with infestation rates in 32 genetically diverse colonies in a ‘common garden’ apiary. Mite biting was found to be negatively correlated with mite infestation levels.  相似文献   

13.
    
Z. Tan  K. Xing  T. Yang  Y. Pan  Y. Wang  S. Mi  D. Sun  C. Wang 《Animal genetics》2018,49(2):127-131
Using the PorcineSNP80 BeadChip, we performed a genome‐wide association study for seven reproductive traits, including total number born, number born alive, litter birth weight, average birth weight, gestation length, age at first service and age at first farrowing, in a population of 1207 Large White pigs. In total, we detected 12 genome‐wide significant and 41 suggestive significant SNPs associated with six reproductive traits. The proportion of phenotypic variance explained by all significant SNPs for each trait ranged from 4.46% (number born alive) to 11.49% (gestation length). Among them, 29 significant SNPs were located within known QTL regions for swine reproductive traits, such as corpus luteum number, stillborn number and litter size, of which one QTL region associated with litter size contained the ALGA0098819 SNP for total number born. Subsequently, we found that 376 functional genes contained or were near these significant SNPs. Of these, 14 genes—BHLHA15, OCM2, IL1B2, GCK, SMAD2, HABP2, PAQR5, GRB10, PRELID2, DMKN, GPI, GPIHBP1, ADCY2 and ACVR2B—were considered important candidates for swine reproductive traits based on their critical roles in embryonic development, energy metabolism and growth development. Our findings contribute to the understanding of the genetic mechanisms for reproductive traits and could have a positive effect on pig breeding programs.  相似文献   

14.
    
High‐throughput DNA sequencing facilitates the analysis of large portions of the genome in nonmodel organisms, ensuring high accuracy of population genetic parameters. However, empirical studies evaluating the appropriate sample size for these kinds of studies are still scarce. In this study, we use double‐digest restriction‐associated DNA sequencing (ddRADseq) to recover thousands of single nucleotide polymorphisms (SNPs) for two physically isolated populations of Amphirrhox longifolia (Violaceae), a nonmodel plant species for which no reference genome is available. We used resampling techniques to construct simulated populations with a random subset of individuals and SNPs to determine how many individuals and biallelic markers should be sampled for accurate estimates of intra‐ and interpopulation genetic diversity. We identified 3646 and 4900 polymorphic SNPs for the two populations of A. longifolia, respectively. Our simulations show that, overall, a sample size greater than eight individuals has little impact on estimates of genetic diversity within A. longifolia populations, when 1000 SNPs or higher are used. Our results also show that even at a very small sample size (i.e. two individuals), accurate estimates of FST can be obtained with a large number of SNPs (≥1500). These results highlight the potential of high‐throughput genomic sequencing approaches to address questions related to evolutionary biology in nonmodel organisms. Furthermore, our findings also provide insights into the optimization of sampling strategies in the era of population genomics.  相似文献   

15.
    
Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations – two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species‐specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one‐third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact.  相似文献   

16.
    
  相似文献   

17.
    
Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within‐colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host–parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host–parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects.  相似文献   

18.
    
With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non‐model species. Here, we describe a successful approach to a genome‐wide medium density Single Nucleotide Polymorphism (SNP) panel in a non‐model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP‐chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP‐chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP‐chip to demonstrate the ability of such genome‐wide marker data to detect population sub‐division, and compared these results to similar analyses using microsatellites. The SNP‐chip will be used to map Quantitative Trait Loci (QTL) for fitness‐related phenotypic traits in natural populations.  相似文献   

19.
    
As the human population has increased, so too has the demand for biotically pollinated crops. Bees (Apoidea) are essential for pollen transfer and fruit production in many crops, and their visit patterns can be influenced by floral morphology. Here, we considered the role of floral morphology on visit rates and behaviour of managed honey bees (Apis mellifera) and wild bumble bees (genus Bombus), for four highbush blueberry cultivars (Vaccinium corymbosum L.). We measured five floral traits for each cultivar, finding significant variation among cultivars. Corolla throat diameter may be the main morphological determinant of visit rates of honey bees, which is significantly higher on the wider flowers of cv. ‘Duke’ than on ‘Bluecrop’ or ‘Draper’. Honey bees also visited cv. ‘Duke’ legitimately but were frequent nectar robbers on the long, narrow flowers of cv. ‘Bluecrop’. Bumble bees were infrequent (and absent on cv. ‘Draper’) but all observed visits were legitimate. Crop yield was highest for the cultivar with the highest combined (honey bee + bumble bee) visit rate, suggesting that aspects of floral morphology that affect pollinator visit patterns should be considered in crop breeding initiatives.  相似文献   

20.
    
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号