首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the progression of osteoarthritis, dysregulation of extracellular matrix (ECM) anabolism, abnormal generation of reactive oxygen species, and proteolytic enzymes have been shown to accelerate the degradation process of cartilage. The purpose of the current study was to investigate the functional role of bromodomain‐containing protein 4 (BRD4) in hydrogen peroxide (H2O2)–stimulated chondrocyte injury and delineate the underlying molecular mechanisms. We observed that the expression BRD4 was markedly elevated in rat chondrocytes after H2O2 stimulation. Additionally, inhibition of BRD4 using small interfering RNA or JQ1 (a selective potent chemical inhibitor) led to repression of H2O2‐induced oxidative stress, as revealed by a decrease in the reactive oxygen species production accompanied by a decreased malondialdehyde content, along with increased activities of antioxidant markers superoxide dismutase, catalase, and glutathione peroxidase on exposure of chondrocytes to H2O2. Meanwhile, depletion of BRD4 led to repress the oxidative stress–induced apoptosis of chondrocytes triggered by H2O2 accompanied by an increase in the expression of anti‐apoptotic Bcl‐2 and a decrease in the expression of pro‐apoptotic Bax and caspase 3 as well as attenuated caspase 3 activity. Moreover, knockdown of BRD4 or treatment with JQ1 markedly attenuated ECM deposition, reflected in a marked upregulation of proteoglycans collagen type II and aggrecan as well as downregulation of ECM–degrading enzymes matrix metalloproteinase 13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‐5). More importantly, inhibition of BRD4‐activated NF‐E2–related factor 2 (Nrf2)–heme oxygenase‐1 signaling. Mechanistically, the protective effect of BRD4 inhibition on H2O2‐stimulated apoptosis and cartilage matrix degeneration was markedly abrogated by Nrf2 depletion. Altogether, we concluded that the protective effect of BRD4 inhibition against oxidative stress–mediated apoptosis and cartilage matrix degeneration occurred through Nrf2–heme oxygenase‐1 signaling, implying that BRD4 inhibition may be a more effective therapeutic strategy against osteoarthritis.  相似文献   

2.
Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. On one side, ROS can be oncogenic by promoting hypoxic conditions, genomic instability and tumorigenesis. Conversely, elevated levels of ROS‐induced oxidative stress can induce cancer cell death. This is evidenced by the conflicting results of research using antioxidant therapy, which in some cases promoted tumour growth and metastasis. However, some antioxidative or ROS‐mediated oxidative therapies have also yielded beneficial effects. To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, hydrogen peroxide (H2O2; 10–1,000 μM) was used as an ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle. Our result indicated that the treatment of cancer cells with H2O2 + HA was significantly more effective than H2O2 alone. In addition, treatment with H2O2 + HA led to increased apoptosis, decreased proliferation, and multiphase cell cycle arrest in 4T1 cells in a dose‐dependent manner under normoxic or hypoxic conditions. As a result, migratory tendency and the messenger RNA levels of vascular endothelial growth factor, matrix metalloproteinase‐2 (MMP‐2), and MMP‐9 were significantly decreased in 4T1 cells. Of note, HA treatment combined with 100–1,000 μM H2O2 caused more damage to MNCs as compared to treatment with lower concentrations (10–50 μM). Based on these results, we propose to administer high‐dose H2O2 + HA (100–1000 μM) for intratumoural injection and low doses for systemic administration. Intratumoural route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.  相似文献   

3.
Hypoxia is a condition in which the whole body or a region of the body is deprived of oxygen supply. The brain is very sensitive to the lack of oxygen and cerebral hypoxia can rapidly cause severe brain damage. Astrocytes are essential for the survival and function of neurons. Therefore, protecting astrocytes against cell death is one of the main therapeutic strategies for treating hypoxia. Hence, the mechanism of hypoxia‐induced astrocytic cell death should be fully elucidated. In this study, astrocytes were exposed to hypoxic conditions using a hypoxia work station or the hypoxia mimetic agent cobalt chloride (CoCl2). Both the hypoxic gas mixture (1% O2) and chemical hypoxia‐induced apoptotic cell death in T98G glioblastoma cells and mouse primary astrocytes. Reactive oxygen species were generated in response to the hypoxia‐mediated activation of caspase‐1. Active caspase‐1 induced the classical caspase‐dependent apoptosis of astrocytes. In addition, the microRNA processing enzyme Dicer was cleaved by caspase‐3 during hypoxia. Knockdown of Dicer using antisense oligonucleotides induced apoptosis of T98G cells. Taken together, these results suggest that astrocytic cell death during hypoxia is mediated by the reactive oxygen species/caspase‐1/classical caspase‐dependent apoptotic pathway. In addition, the decrease in Dicer levels by active caspase‐3 amplifies this apoptotic pathway via a positive feedback loop. These findings may provide a new target for therapeutic interventions in cerebral hypoxia.  相似文献   

4.
Oxidative stress is a major challenge for all cells living in an oxygen‐based world. Among reactive oxygen species, H2O2, is a well known toxic molecule and, nowadays, considered a specific component of several signalling pathways. In order to gain insight into the roles played by H2O2 in plant cells, it is necessary to have a reliable, specific and non‐invasive methodology for its in vivo detection. Hence, the genetically encoded H2O2 sensor HyPer was expressed in plant cells in different subcellular compartments such as cytoplasm and peroxisomes. Moreover, with the use of the new green fluorescent protein (GFP)‐based Cameleon Ca2+ indicator, D3cpv–KVK–SKL, targeted to peroxisomes, we demonstrated that the induction of cytoplasmic Ca2+ increase is followed by Ca2+ rise in the peroxisomal lumen. The analyses of HyPer fluorescence ratios were performed in leaf peroxisomes of tobacco and pre‐ and post‐bolting Arabidopsis plants. These analyses allowed us to demonstrate that an intraperoxisomal Ca2+ rise in vivo stimulates catalase activity, increasing peroxisomal H2O2 scavenging efficiency.  相似文献   

5.
Oxidative stress, caused by reactive oxygen species (ROS), is a major contributor to inflammatory bowel disease (IBD)‐associated neoplasia. We mimicked ROS exposure of the epithelium in IBD using non‐tumour human colonic epithelial cells (HCEC) and hydrogen peroxide (H2O2). A population of HCEC survived H2O2‐induced oxidative stress via JNK‐dependent cell cycle arrests. Caspases, p21WAF1 and γ‐H2AX were identified as JNK‐regulated proteins. Up‐regulation of caspases was linked to cell survival and not, as expected, to apoptosis. Inhibition using the pan‐caspase inhibitor Z‐VAD‐FMK caused up‐regulation of γ‐H2AX, a DNA‐damage sensor, indicating its negative regulation via caspases. Cell cycle analysis revealed an accumulation of HCEC in the G1‐phase as first response to oxidative stress and increased S‐phase population and then apoptosis as second response following caspase inhibition. Thus, caspases execute a non‐apoptotic function by promoting cells through G1‐ and S‐phase by overriding the G1/S‐ and intra‐S checkpoints despite DNA‐damage. This led to the accumulation of cells in the G2/M‐phase and decreased apoptosis. Caspases mediate survival of oxidatively damaged HCEC via γ‐H2AX suppression, although its direct proteolytic inactivation was excluded. Conversely, we found that oxidative stress led to caspase‐dependent proteolytic degradation of the DNA‐damage checkpoint protein ATM that is upstream of γ‐H2AX. As a consequence, undetected DNA‐damage and increased proliferation were found in repeatedly H2O2‐exposed HCEC. Such features have been associated with neoplastic transformation and appear here to be mediated by a non‐apoptotic function of caspases. Overexpression of upstream p‐JNK in active ulcerative colitis also suggests a potential importance of this pathway in vivo.  相似文献   

6.
Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC‐5 (retinal ganglion cell‐5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC‐5 under these conditions. Sub‐confluent cells were treated either with H2O2 or maintained in SFM (serum‐free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC‐5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c‐Jun N‐terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho‐JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho‐JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC‐5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.  相似文献   

7.
A facile method was developed for the preparation of water soluble β‐Cyclodextrin (β‐CD)‐modified CdSe quantum dots (QDs) (β‐CD‐QDs) by directly replacing the oleic acid ligands on the QDs surface with β‐CD in an alkaline aqueous solution. The as‐prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β‐CD‐QDs. Among them, H2PO4 exhibited the largest quenching effect. For the polyprotic acids (HO)3AO, the effect of acidic anions on the fluorescence of β‐CD‐QDs was in the order: monoanion (HO)2AO2 > dianion (HO)AO32– >> trianion AO43–. After photoactivation for several days in the presence of anions at alkaline pH, the β‐CD‐QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β‐CD‐QDs was investigated further. It was found that Ag+, Hg2+ and Co2+ have significant quenching effect on the fluorescence of the β‐CD‐QDs. The Stern–Volmer quenching constants increased in the order: Hg2+ < Co2+ <Ag+. The adsorption model of metal ions on β‐CD‐QDs was explored. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Objective: Obesity is associated with oxidative stress and inflammation. We hypothesized that the pro‐inflammatory state in obesity may result in spontaneous activation and, hence, increased generation of reactive oxygen species (ROS) and integrin expression in the circulating leukocytes. Methods: Flow cytometry was used to determine integrin expression (immunostaining) as well as superoxide and hydrogen peroxide productions (fluorescent probes) in the peripheral blood and splenic leukocyte of 24‐week‐old male obese normotensive and not‐as‐yet diabetic Zucker rats (n = 6) and their lean counterparts (n = 6). Results: Obese rats had hyperlipidemia and normal arterial pressure, plasma glucose, and creatinine concentrations. Nevertheless, obese rats exhibited increased hydrogen peroxide production by circulating and splenic CD4+ and CD8+ T lymphocytes and by splenic macrophages. This was accompanied by up‐regulations of CD11a expression in the peripheral blood and splenic CD4+ T cells, CD11b in circulating macrophages, and CD11a and CD18 in circulating granulocytes. Conclusion: The study revealed direct evidence of spontaneous leukocyte activation and increased ROS generation by T lymphocytes and monocytes in the peripheral blood of obese Zucker rats before the development of diabetes or hypertension. These findings illustrate the link between obesity, oxidative stress, and inflammation.  相似文献   

9.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

10.
Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2O2‐induced injury and hypoxia/reoxygenation‐induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs‐mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang‐II)‐induced cardiac hypertrophy. Following 14 days of Ang‐II infusion with osmotic mini‐pumps, a comparable hypertension was generated in both of CD38 knockout and wild‐type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild‐type mice compared with CD38 knockout mice. Consistently, RNAi‐induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang‐II‐stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca2+ release induced by Ang‐II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca2+‐NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.  相似文献   

11.
Continuously generated hydrogen peroxide (H2O2) inhibits typical apoptosis and instead initiates a caspase‐independent, apoptosis‐inducing factor (AIF)‐mediated pyknotic cell death. This may be related to H2O2‐mediated DNA damage and subsequent ATP depletion, although the exact mechanisms by which the mode of cell death is decided after H2O2 exposure are still unclear. Accumulated evidence and our previous data led us to hypothesize that continuously generated H2O2, not an H2O2 bolus, induces severe DNA damage, signaling poly(ADP‐ribose) polymerase‐1 (PARP‐1) activation, ATP depletion, and eventually caspase‐independent cell death. Results from the present study support that H2O2 generated continuously by glucose oxidase causes excessive DNA damage and PARP‐1 activation. Blockage of PARP‐1 by a siRNA transfection or by pharmacological inhibitor resulted in the significant inhibition of ATP depletion, loss of mitochondrial membrane potential, nuclear translocation of AIF and endonuclease G, and eventually conversion to caspase‐dependent apoptosis. Overall, the current study demonstrates the different roles of PARP‐1 inhibition in modulation of cell death according to the method of H2O2 exposure, that is, continuous generation versus a direct addition. J. Cell. Biochem. 108: 989–997, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Malignant mesothelioma (MMe) is a highly aggressive, lethal tumour requiring the development of more effective therapies. The green tea polyphenol epigallocathechin‐3‐gallate (EGCG) inhibits the growth of many types of cancer cells. We found that EGCG is selectively cytotoxic to MMe cells with respect to normal mesothelial cells. MMe cell viability was inhibited by predominant induction of apoptosis at lower doses and necrosis at higher doses. EGCG elicited H2O2 release in cell cultures, and exogenous catalase (CAT) abrogated EGCG‐induced cytotoxicity, apoptosis and necrosis. Confocal imaging of fluo 3‐loaded, EGCG‐exposed MMe cells showed significant [Ca2+]i rise, prevented by CAT, dithiothreitol or the T‐type Ca2+ channel blockers mibefradil and NiCl2. Cell loading with dihydrorhodamine 123 revealed EGCG‐induced ROS production, prevented by CAT, mibefradil or the Ca2+ chelator BAPTA‐AM. Direct exposure of cells to H2O2 produced similar effects on Ca2+ and ROS, and these effects were prevented by the same inhibitors. Sensitivity of REN cells to EGCG was correlated with higher expression of Cav3.2 T‐type Ca2+ channels in these cells, compared to normal mesothelium. Also, Cav3.2 siRNA on MMe cells reduced in vitro EGCG cytotoxicity and abated apoptosis and necrosis. Intriguingly, Cav3.2 expression was observed in malignant pleural mesothelioma biopsies from patients, but not in normal pleura. In conclusion, data showed the expression of T‐type Ca2+ channels in MMe tissue and their role in EGCG selective cytotoxicity to MMe cells, suggesting the possible use of these channels as a novel MMe pharmacological target.  相似文献   

13.
In Arabidopsis thaliana, LESION SIMULATING DISEASE 1 (LSD1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4) proteins are regulators of cell death (CD) in response to abiotic and biotic stresses. Hormones, such as salicylic acid (SA), and reactive oxygen species, such as hydrogen peroxide (H2O2), are key signaling molecules involved in plant CD. The proposed mathematical models presented in this study suggest that LSD1, EDS1 and PAD4 together with SA and H2O2 are involved in the control of plant water use efficiency (WUE), vegetative growth and generative development. The analysis of Arabidopsis wild‐type and single mutants lsd1, eds1, and pad4, as well as double mutants eds1/lsd1 and pad4/lsd1, demonstrated the strong conditional correlation between SA/H2O2 and WUE that is dependent on LSD1, EDS1 and PAD4 proteins. Moreover, we found a strong correlation between the SA/H2O2 homeostasis of 4‐week‐old Arabidopsis leaves and a total seed yield of 9‐week‐old plants. Altogether, our results prove that SA and H2O2 are conditionally regulated by LSD1/EDS/PAD4 to govern WUE, biomass accumulation and seed yield. Conditional correlation and the proposed models presented in this study can be used as the starting points in the creation of a plant breeding algorithm that would allow to estimate the seed yield at the initial stage of plant growth, based on WUE, SA and H2O2 content.  相似文献   

14.
It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off‐line gold nanoparticle (AuNP)‐catalyzed luminol–H2O2 CL system. By contrast, flavonoids enhanced the CL intensity of an on‐line AuNP‐catalyzed luminol–H2O2 CL system. In the off‐line system, the AuNPs were prepared beforehand, whereas in the on‐line system, AuNPs were produced by on‐line mixing of luminol prepared in a buffer solution of NaHCO3 ? Na2CO3 and HAuCl4 with no need for the preliminary preparation of AuNPs. The on‐line system had prominent advantages over the off‐line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off‐line AuNP‐catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy‐sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on‐line system was ascribed to the presence of flavonoids promoting the on‐line formation of AuNPs, which better catalyzed the luminol–H2O2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP‐catalyzed CL system.  相似文献   

15.
Carazolol [4‐(2‐hydroxy‐3‐isopropyl‐amino‐propoxy)‐carbazole], a β3‐adrenoceptor agonist, is clinically used in the treatment of hypertension, cardiac arrhythmias and angina pectoris. Despite the beneficial effect of the drug, its high dose may contribute to cardiotoxicity. This study was conducted to examine whether carazolol can influence hydroxyl radical formation by a Fenton‐like reaction [Co(II) + H2O2 + HO] in the presence of ethylenediaminetetraacetic acid. The oxygen free radicals and singlet oxygen (1O2) formation was traced by three different assay methods: chemiluminescence (CL), an electron spin resonance (ESR) spin trapping with 2,2,6,6‐tetramethyl‐4‐piperidine and 5,5‐dimethyl‐1‐pyrroline‐1‐oxide, and spectrophotometric determination of 1O2 based on bleaching of p‐nitrosodimethylaniline. The effect of hydroxyl radical inhibitors and 1O2 quenchers on peroxidation of carazolol was also examined. The results indicated that carazolol enhanced the HO radical and 1O2 formation in a Fenton‐like reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
8‐Hydroxyquinoline‐7‐carboxaldehyde (8‐HQ‐7‐CA), Schiff‐base ligand 8‐hydroxyquinoline‐7‐carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO3)(H2O)2]2 were prepared from the ligand and equivalent molar amounts of Ln(NO3)?6 H2O (Ln=La3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Ho3+, Er3+, Yb3+, resp.). Ligand acts as dibasic tetradentates, binding to LnIII through the phenolate O‐atom, N‐atom of quinolinato unit, and C?N and ? O? C?N? groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O‐atoms leading to a central four‐membered (LnO)2 ring. Ligand and all of the LnIII complexes can strongly bind to CT‐DNA through intercalation with the binding constants at 105–106 M ?1. Moreover, ligand and all of the LnIII complexes have strong abilities of scavenging effects for hydroxyl (HO.) radicals. Both the antioxidation and DNA‐binding properties of LnIII complexes are much better than that of ligand.  相似文献   

17.
Two new α‐pyrones (=2H‐pyran‐2‐ones), ficipyrones A and B ( 1 and 2 , resp.), and two new α‐furanones (=2H‐furan‐2‐ones), ficifuranones A and B ( 3 and 4 , resp.), together with three known metabolites, antibiotic F 0368 ( 5 ), hydroxyseiridin ( 6 ), and hydroxyisoseiridin ( 7 ), were isolated from solid cultures of the plant endophytic fungus Pestalotiopsis fici. Their structures were elucidated primarily by NMR spectroscopy, and the absolute configuration of 1 was deduced from the circular‐dichroism (CD) data. Compound 1 showed antifungal activity against the plant pathogen Gibberella zeae (CGMCC 3.2873) with an IC50 value of 15.9 μM .  相似文献   

18.
19.
Two complexes of Tb3+, Gd3+/Tb3+ and one heteronuclear crystal Gd3+/Tb3+ with phenoxyacetic acid (HPOA) and 2,4,6‐tris‐(2‐pyridyl)‐s–triazine (TPTZ) have been synthesized. Elemental analysis, rare earth coordination titration, inductively coupled plasma atomic emission spectrometry (ICP‐AES) and thermogravimetric analysis‐differential scanning calorimetry (TG‐DSC) analysis show that the two complexes are Tb2(POA)6(TPTZ)2·6H2O and TbGd(POA)6(TPTZ)2·6H2O, respectively. The crystal structure of TbGd(POA)6(TPTZ)2·2CH3OH was determined using single‐crystal X‐ray diffraction. The monocrystal belongs to the triclinic system with the P‐1 space group. In particular, each metal ion is coordinately bonded to three nitrogen atoms of one TPTZ and seven oxygen atoms of three phenoxyacetic ions. Furthermore, there exist two coordinate forms between C6H5OCH2COO and the metal ions in the crystal. One is a chelating bidentate, the other is chelating and bridge coordinating. Fluorescence determination shows that the two complexes possess strong fluorescence emissions. Furthermore, the fluorescence intensity of the Gd3+/Tb3+ complex is much stronger than that of the undoped complex, which may result from a decrease in the concentration quench of Tb3+ ions, and intramolecular energy transfer from the ligands coordinated with Gd3+ ions to Tb3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
An easy‐to‐prepare chiral CE method for the enantiomeric separation of 13 new amphetamine‐like designer drugs, using CDs as chiral selectors, was developed. Sulfated‐β‐CD was found to be the best chiral selector among the three used (sulfated‐β‐CD, caroboxymethyl‐β‐CD, dimethyl‐β‐CD). The separation of the analytes was achieved in a fused‐silica gel capillary at 20 °C using an applied voltage of +25 kV. The optimized background electrolyte consisted of 63.5 mM H3PO4 and 46.9 mM NaOH in water. Several electrophoretic parameters such as CD type, CD concentration (1 ? 40 mg/mL), buffer pH (2.6, 3.6, 5.0, 6.0), length of the capillary (70 ? 40 cm total length), amount of the organic solvent (methanol and acetonitrile) were investigated and optimized. Chirality 25:617–621, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号