首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow‐derived mesenchymal stem cells (BM‐MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM‐MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion‐induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM‐MSCs. Seventy mice were pre‐treated with BM‐MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro‐vascular endothelial cells (HPMVECs) were pre‐conditioned with BM‐MSCs by oxygen‐glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3‐kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI‐treated mice, administration of BM‐MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD‐treated HPMVECs, co‐culture with BM‐MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM‐MSCs decreased the level of PI3K class I and p‐Akt while the expression of PI3K class III was increased. Finally, BM‐MSCs‐induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM‐MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM‐MSCs and will help to develop new cell‐based therapeutic strategies in lung injury.  相似文献   

2.
Telocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects. Data on the secretory profile of TCs and the bidirectional shuttle vesicular signalling mechanism between TCs and CSCs are scarce. We aimed to characterize and understand the in vitro effect of the TC secretome on CSC fate. Therefore, we studied the protein secretory profile using supernatants from mouse cultured cardiac TCs. We also performed a comparative secretome analysis using supernatants from rat cultured cardiac TCs, a pure CSC line and TCs‐CSCs in co‐culture using (i) high‐sensitivity on‐chip electrophoresis, (ii) surface‐enhanced laser desorption/ionization time‐of‐flight mass spectrometry and (iii) multiplex analysis by Luminex‐xMAP. We identified several highly expressed molecules in the mouse cardiac TC secretory profile: interleukin (IL)‐6, VEGF, macrophage inflammatory protein 1α (MIP‐1α), MIP‐2 and MCP‐1, which are also present in the proteome of rat cardiac TCs. In addition, rat cardiac TCs secrete a slightly greater number of cytokines, IL‐2, IL‐10, IL‐13 and some chemokines like, GRO‐KC. We found that VEGF, IL‐6 and some chemokines (all stimulated by IL‐6 signalling) are secreted by cardiac TCs and overexpressed in co‐cultures with CSCs. The expression levels of MIP‐2 and MIP‐1α increased twofold and fourfold, respectively, when TCs were co‐cultured with CSCs, while the expression of IL‐2 did not significantly differ between TCs and CSCs in mono culture and significantly decreased (twofold) in the co‐culture system. These data suggest that the TC secretome plays a modulatory role in stem cell proliferation and differentiation.  相似文献   

3.
4.
Obesity is a major and independent risk factor of kidney diseases. The pathogenic mechanisms of obesity‐associated renal injury are recognized to at least involve a lipid‐rich and pro‐inflammatory state of the renal tissues, but specific mechanisms establishing causal relation remain unknown. Saturated fatty acids are elevated in obesity, and known to induce chronic inflammation in kidneys. Myeloid differentiation protein 2 (MD2) is an important protein in lipopolysaccharide‐induced innate immunity response and inflammation. We suggested that obesity‐associated renal injury is regulated by MD2 thereby driving an inflammatory renal injury. The used three mouse models for in vivo study: MD2 knockout mice (KO) maintained on high fat diet (HFD), wild‐type mice on HFD plus L6H21, a specific MD2 inhibitor and KO mice given palmitic acid (PA) by IV injection. The in vitro studies were carried out in cultured renal tubular epithelial cells, mouse mesangial cells and primary macrophages, respectively. The HFD mice presented with increased hyperlipidemia, serum creatinine and proteinuria. Renal tissue from HFD mice had increased fibrosis, inflammatory cytokines, macrophage infiltration, and activation of NF‐κB and MAPKs. This HFD‐induced renal injury profile was not observed in KO mice or L6H21‐treated mice. Mice given PA mimmicked the HFD‐induced renal injury profiles, which were prevented by MD2 knockout. The in vitro data further confirmed MD2 mediates PA‐induced inflammation. MD2 is causally related with obesity‐associated renal inflammatory injury. We believe that MD2 is an attractive target for future therapeutic strategies in obesity‐associated kidney diseases.  相似文献   

5.
The Y‐box‐binding protein (YB)‐1 plays a non‐redundant role in both systemic and local inflammatory response. We analysed YB‐1‐mediated expression of the immune regulatory cytokine IL‐10 in both LPS and sterile inflammation induced by unilateral renal ischaemia–reperfusion (I/R) and found an important role of YB‐1 not only in the onset but also in the resolution of inflammation in kidneys. Within a decisive cis‐regulatory region of the IL10 gene locus, the fourth intron, we identified and characterized an operative YB‐1 binding site via gel shift experiments and reporter assays in immune and different renal cells. In vivo, YB‐1 phosphorylated at serine 102 localized to the fourth intron, which was paralleled by enhanced IL‐10 mRNA expression in mice following LPS challenge and in I/R. Mice with half‐maximal expression of YB‐1 (Yb1+/?) had diminished IL‐10 expression upon LPS challenge. In I/R, Yb1+/? mice exhibited ameliorated kidney injury/inflammation in the early‐phase (days 1 and 5), however showed aggravated long‐term damage (day 21) with increased expression of IL‐10 and other known mediators of renal injury and inflammation. In conclusion, these data support the notion that there are context‐specific decisions concerning YB‐1 function and that a fine‐tuning of YB‐1, for example, via a post‐translational modification regulates its activity and/or localization that is crucial for systemic processes such as inflammation.  相似文献   

6.
Ischaemic preconditioning (IPC) attenuates acute kidney injury (AKI) from renal ischaemia reperfusion. Renalase, an amine oxidase secreted by the proximal tubule, not only degrades circulating catecholamines but also protects against renal ischaemia reperfusion injury. Here, it has been suggested that the renoprotective effect of renal IPC is partly mediated by renalase. In a model of brief intermittent renal IPC, the increased cortex renalase expression was found to last for 48 hrs. IPC significantly reduced renal tubular inflammation, necrosis and oxidative stress following renal ischaemia reperfusion injury. Such effects were attenuated by blocking renalase with an anti‐renalase monoclonal antibody. We further demonstrated that renalase expression was up‐regulated by hypoxia in vitro via an hypoxia‐inducible factor (HIF)‐1α mechanism. The IPC‐induced up‐regulation of renalase in vivo was also reduced by pre‐treatment with an HIF‐1α inhibitor, 3‐(5′‐Hydroxymethyl‐2′‐furyl)‐1‐benzyl indazole. In summary, the renoprotective effect of IPC is partly dependent on the renalase expression, which may be triggered by hypoxia via an HIF‐1α mechanism. Endogenous renalase shows potential as a therapeutic agent for the prevention and treatment of AKI.  相似文献   

7.

Background

Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF) has been shown to protect the tubular epithelium against apoptosis.

Methodology/Principal Findings

In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis.

Conclusions/Significance

Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.  相似文献   

8.
Three‐dimensional (3D) cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs). In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose‐derived MSCs for acute kidney injury (AKI). In vitro studies indicated that 3D spheroids of MSCs produced higher levels of extracellular matrix proteins (including collagen I, fibronectin and laminin), and exhibited stronger anti‐apoptotic and anti‐oxidative capacities than two‐dimensional (2D) cultured cells. Furthermore, 3D culture increased the paracrine secretion of cytokines by MSCs, including angiogenic factors (VEGF and basic fibroblast growth factor), anti‐apoptotic factors (epidermal growth factor and hepatocyte growth factor), the anti‐oxidative factor insulin‐like growth factor and the anti‐inflammatory protein tumour necrosis factor‐alpha stimulated gene/protein 6. Consistent with in vitro experiments, 3D spheroids of MSCs showed enhanced survival and paracrine effects in vivo. More importantly, when injected into the kidney of model rats with ischemia‐reperfusion (I/R)‐induced AKI, 3D spheroids were more beneficial in protecting the I/R kidney against apoptosis, reducing tissue damage, promoting vascularization and ameliorating renal function compared with 2D cultured cells. Therefore, the 3D culture strategy improved the therapeutic effects of MSCs, and might be promising for AKI treatment.  相似文献   

9.
Recently, we demonstrated that intratracheal transplantation of human umbilical cord blood‐ derived mesenchymal stem cells (MSCs) attenuates Escherichia (E) coli‐ induced acute lung injury primarily by down‐ modulating inflammation and enhancing bacterial clearance iQn mice. This study was performed to elucidate the mechanism underlying the antibacterial effects of MSCs. The growth of E. coli in vitro was significantly inhibited only by MSCs or their conditioned medium with bacterial preconditioning, but not by fibroblasts or their conditioned medium. Microarray analysis identified significant up‐ regulation of toll‐ like receptors (TLR)‐ 2 and TLR‐ 4, and β‐ defensin 2 (BD2) in MSCs compared with fibroblasts after E. coli exposure. The increased BD2 level and the in vitro antibacterial effects of MSCs were abolished by specific antagonist or by siRNA‐ mediated knockdown of TLR‐ 4, but not TLR‐ 2, and restored by BD2 supplementation. The in vivo down‐ modulation of the inflammatory response and enhanced bacterial clearance, increased BD2 secretion and the resultant protection against E. coli‐ induced pneumonia observed only with MSCs, but not fibroblasts, transplantation in mice, were abolished by knockdown of TLR‐ 4 with siRNA transfection. Our data indicate that BD2 secreted by the MSCs via the TLR‐ 4 signalling pathway is one of the critical paracrine factors mediating their microbicidal effects against E. coli, both in vitro and in vivo. Furthermore, TLR‐ 4 from the transplanted MSCs plays a seminal role in attenuating in vivo E. coli‐ induced pneumonia and the ensuing acute lung injury through both its anti‐ inflammatory and antibacterial effects.  相似文献   

10.
Acute kidney disease (AKI) leads to increased risk of progression to chronic kidney disease (CKD). Antithrombin III (ATIII) is a potent anticoagulant with anti‐inflammatory properties, and we previously reported that insufficiencies of ATIII exacerbated renal ischaemia‐reperfusion injury (IRI) in rats. In this study, we examined the characteristic of AKI‐CKD transition in rats with two distinct AKI models. Based on our observation, left IRI plus right nephrectomy (NX‐IRI) was used to determine whether ATIII had therapeutic effects in preventing CKD progression after AKI. It was observed that NX‐IRI resulted in significant functional and histological damage at 5 weeks after NX‐IRI compared with sham rats, which was mitigated by ATIII administration. Besides, we noticed that ATIII administration significantly reduced NX‐IRI‐induced interstitial fibrosis. Consistently, renal expression of collagen‐1, α‐smooth muscle actin and fibronectin were substantial diminished in ATIII‐administered rats compared with un‐treated NX‐IRI rats. Furthermore, the beneficial effects of ATIII were accompanied with decreased M1‐like macrophage recruitment and down‐regulation of M1‐like macrophage‐dependent pro‐inflammatory cytokines such as tumour necrosis factor α, inducible nitric oxide synthase and interleukin‐1β, indicating that ATIII prevented AKI‐CKD transition via inhibiting inflammation. Overall, ATIII shows potential as a therapeutic strategy for the prevention of CKD progression after AKI.  相似文献   

11.
Telocytes (TCs) are a novel type of interstitial cells which are potentially involved in tissue regeneration and repair ( www.telocytes.com ). Previously, we documented the presence of TCs in liver. However, the possible roles of TCs in liver regeneration remain unknown. In this study, a murine model of partial hepatectomy (PH) was used to induce liver regeneration. The number of TCs detected by double labelling immunofluorescence methods (CD34/PDGFR‐α, CD34/PDGFR‐ß and CD34/Vimentin) was significantly increased when a high level of hepatic cell proliferation rate (almost doubled) as shown by 5‐ethynyl‐2′‐deoxyuridine (EdU) immunostaining and Western Blot of Proliferating cell nuclear antigen (PCNA) was found at 48 and 72 hrs post‐PH. Meanwhile, the number of CK‐19 positive‐hepatic stem cells peaked at 72 hrs post‐PH, co‐ordinating with the same time‐point, when the number of TCs was most significantly increased. Taken together, the results indicate a close relationship between TCs and the cells essentially involved in liver regeneration: hepatocytes and stem cells. It remains to be determined how TCs affect hepatocytes proliferation and/or hepatic stem cell differentiation in liver regeneration. Besides intercellular junctions, we may speculate a paracrine effect via ectovesicles.  相似文献   

12.
Tubulointerstitial fibrosis plays an important role in end‐stage renal failure, and there are only limited therapeutic options available to preserve organ function. In the present study, we identified that nodakenin, a coumarin isolated from the roots of Angelicae gigas, functions effectively against unilateral ureteral obstruction (UUO)‐induced fibrosis via down‐regulating Snail1 expression. We established UUO‐induced renal fibrosis in mice and then administered with nodakenin orally ata a dose of 1 and 10 mg/kg. The in‐vivo results indicated that nodakenin protected obstructive nephropathy through its anti‐inflammatory and anti‐fibrotic properties. Nodakenin prevented the infiltration of inflammatory cells, alleviated the levels of pro‐inflammatory cytokines, reduced the polarization of macrophages and down‐regulating the aberrant deposition of extracellular matrix at the site of injury. Of note, nodakenin dramatically impeded Smad3, NF‐κB p65 phosphorylation and Snail1 expression. In line with in vivo studies, nodakenin suppressed the expression of Snail1, Smad3 phosphorylation and fibrogenesis in TGF‐β1‐treated renal epithelial cells in‐vitro. Furthermore, we found that the effect of nodaknin against fibrosis was reversed in Snail1 overexpressing cells, whereas nodakenin could not further reduce expression of fibrogenesis in Snail1 silenced cells, suggesting that nodaknein may function through a Snail1‐dependent manner. Collectively, this study reveal a critical role of nodakenin in the cure of renal fibrosis.  相似文献   

13.
Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.  相似文献   

14.
Abstract

Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). IRI-induced AKI releases proinflammatory cytokines (e.g. IL-1β, TNF-α, IL-6) that induce a systemic inflammatory response, resulting in proinflammatory cells recruitment and remote organ damage. AKI is associated with poor outcomes, particularly when extrarenal complications or distant organ injuries occur. Acute lung injury (ALI) is a major remote organ dysfunction associated with AKI. Hence, kidney-lung cross-talk remains a clinical challenge, especially in critically ill population. The stress-responsive enzyme, heme oxygenase-1 (HO-1) is largely known to protect against renal IRI and may be preventively induced using hemin prior to renal insult. However, the use of hemin-induced HO-1 to prevent AKI-induced ALI remains poorly investigated. Mice received an intraperitoneal injection of hemin or sterile saline 1?day prior to surgery. Twenty-four hours later, mice underwent bilateral renal IRI for 26?min or sham surgery. After 4 or 24?h of reperfusion, mice were sacrificed. Hemin-induced HO-1 improved renal outcomes after IRI (i.e. fewer renal damage, renal inflammation, and oxidative stress). This protective effect was associated with a dampened systemic inflammation (i.e. IL-6 and KC). Subsequently, mitigated lung inflammation was found in hemin-treated mice (i.e. neutrophils influx and lung KC). The present study demonstrates that hemin-induced HO-1 controls the magnitude of renal IRI and the subsequent AKI-induced ALI. Therefore, targeting HO-1 represents a promising approach to prevent the impact of renal IRI on distant organs, such as lung.  相似文献   

15.
16.
Acute kidney injury (AKI) incidence among hospitalized patients is increasing steadily. Despite progress in prevention strategies and support measures, AKI remains correlated with high mortality, particularly among ICU patients, and no effective AKI therapy exists. Here, we investigated the function in kidney ischaemia‐reperfusion injury (IRI) of C1orf54, a newly identified protein encoded by an open reading frame on chromosome 1. C1orf54 expression was high in kidney and low in heart, liver, spleen, lung and skeletal muscle in healthy mice, and in the kidney, C1orf54 was expressed in tubular epithelial cells (TECs), but not in glomeruli. C1orf54 expression was markedly decreased on Day 1 after kidney IRI and then gradually recovered to baseline levels by Day 7. Notably, relative to wild‐type mice, C1orf54‐knockout mice exhibited impaired TEC proliferation and delayed recovery after kidney IRI, which led to deteriorated renal function and increased mortality. Conversely, adenovirus‐mediated C1orf54 overexpression promoted TEC proliferation and ameliorated kidney pathology, which resulted in accelerated renal repair and improved renal function. Mechanistically, C1orf54 was found to promote TEC proliferation through PI3K/AKT signalling. Thus, C1orf54 holds considerable potential as a therapeutic target in kidney IRI.  相似文献   

17.
Renal ischemia-reperfusion is a major cause of acute kidney injury, a disease currently without effective treatments. Irisin was initially identified as an important factor produced by muscles to mediate the health benefits of exercise, and recent work has further suggested its protective effect against lung and liver injury. However, the role of Irisin in kidney diseases, including renal ischemia-reperfusion injury (IRI), remains unknown. In the present study, we found that the Irisin precursor, fibronectin type III domain-containing protein 5 (Fndc5), was induced in renal tubules in a mouse model of renal IRI and in cultured mouse renal proximal tubular cells subjected ATP depletion injury. Functionally, silencing Fndc5 in cultured proximal tubular cells increased the sensitivity to ATP depletion-induced apoptosis, whereas both Fndc5 overexpression and supplementation of recombinant Irisin alleviated ATP depletion-induced apoptosis. In vivo, administration of recombinant Irisin dramatically attenuated kidney dysfunction, tissue damage, tubular cell apoptosis, and inflammation during renal IRI in mice. Mechanistically, Irisin suppressed the activation of p53 in renal IRI, a critical factor in tubular cell death. Together, these results indicate that Irisin is induced in renal IRI as a protective mechanism for renal tubular cells, suggesting the therapeutic potential of recombinant Irisin in renal IRI and related kidney diseases.  相似文献   

18.
Stem cell transplantation represents a promising strategy for the repair of spinal cord injury (SCI). However, the low survival rate of the grafted cells is a major obstacle hindering clinical success because of ongoing secondary injury processes, which includes excitotoxicity, inflammation and oxidative stress. Previous studies have shown that 17b‐estradiol (E2) protects several cell types against cytotoxicity. Thus, we examined the effects of E2 on the viability of human eyelid adipose‐derived stem cells (hEASCs) in vitro with hydrogen peroxide (H2O2)‐induced cell model and in vivo within a rat SCI model. Our results showed that E2 protected hEASCs against H2O2‐induced cell death in vitro, and enhanced the survival of grafted hEASCs in vivo by reducing apoptosis. Additionally, E2 also enhanced the secretion of growth factors by hEASCs, thereby making the local microenvironment more conducive for tissue regeneration. Overall, E2 administration enhanced the therapeutic efficacy of hEASCs transplantation and facilitated motor function recovery after SCI. Hence, E2 administration may be an intervention of choice for enhancing survival of transplanted hEASCs after SCI.  相似文献   

19.
The generation of patient‐specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4‐mediated direct reprogramming, using anchorage‐independent growth to ensure high purity. Homogeneous iOPCs exhibit typical small‐bipolar morphology, maintain their self‐renewal capacity and OPC marker expression for more than 31 passages, share high similarity in the global gene expression profile to wild‐type OPCs, and give rise to mature oligodendrocytes and astrocytes in vitro and in vivo. Notably, transplanted iOPCs contribute to functional recovery in a spinal cord injury (SCI) model without tumor formation. This study provides a simple strategy to generate functional self‐renewing iOPCs and yields insights for the in‐depth study of demyelination and regenerative medicine.  相似文献   

20.
The purpose of this study was to determine the correlation between over‐expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio‐sensitivity of non‐small cell lung carcinoma (NSCLC) cells. 3‐[4,5‐dimethylthylthiazol‐2‐yl]‐2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V‐Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X‐ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF‐κB. Finally, to examine the effect of shNRP1 on proliferation and radio‐sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1‐A549) showed a significant reduction in colony‐forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA‐mediated NRP1 inhibition also significantly enhanced the radio‐sensitivity of NSCLC cells both in vitro and in vivo. The over‐expression of NRP1 was correlated with growth, survival and radio‐resistance of NSCLC cells via the VEGF‐PI3K‐ NF‐κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio‐sensitization of NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号