首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Greenbeard genes identify copies of themselves in other individuals and cause their bearer to behave nepotistically towards those individuals. Bacterial toxins (bacteriocins) exemplify the greenbeard effect because producer strains carry closely linked genes for immunity, such that toxicity is limited to nonproducer strains. Bacteriocin producers can be maintained in a dynamic polymorphism, known as rock‐paper‐scissors (RPS) dynamics, with immune and susceptible strains. However, it is unclear whether and how such dynamics will be maintained in the presence of multiple toxin types (multiple beard ‘colours’). Here, we analyse strain dynamics using models of recurrent patch colonization and population growth. We find that (i) polymorphism is promoted by a small number of founding lineages per patch, strong local resource competition and the occurrence of mutations; (ii) polymorphism can be static or dynamic, depending on the intensity of local interactions and the costs of toxins and immunity; (iii) the occurrence of multiple toxins can promote RPS dynamics; and (iv) strain diversity can be maintained even when toxins differ in toxicity or lineages can exhibit multitoxicity/multi‐immunity. Overall, the factors that maintain simple RPS dynamics can also promote the coexistence of multiple toxin types (multiple beard colours), thus helping to explain the remarkable levels of bacteriocin diversity in nature. More generally, we contrast these results with the maintenance of marker diversity in genetic kin recognition.  相似文献   

2.
Yinghui Yang  Cang Hui 《Oikos》2021,130(2):260-273
Competitive intransitivity is mostly considered outside the main body of coexistence theories that rely primarily on the role of niche overlap and differentiation. How the interplay of competitive intransitivity and niche overlap jointly affects species coexistence has received little attention. Here, we consider a rock–paper–scissors competition system where interactions between species can represent the full spectra of transitive–intransitive continuum and niche overlap/differentiation under different levels of competition asymmetry. By comparing results from pair approximation that only considers interference competition between neighbouring cells in spatial lattices, with those under the mean-field assumption, we show that 1) species coexistence under transitive competition is only possible at high niche differentiation; 2) in communities with partial or pure intransitive interactions, high levels of niche overlap are not necessary to beget species extinction; and 3) strong spatial clustering can widen the condition for intransitive loops to facilitate species coexistence. The two mechanisms, competitive intransitivity and niche differentiation, can support species persistence and coexistence, either separately or in combination. Finally, the contribution of intransitive loops to species coexistence can be enhanced by strong local spatial correlations, modulated and maximised by moderate competition asymmetry. Our study, therefore, provides a bridge to link intransitive competition to other generic ecological theories of species coexistence.  相似文献   

3.
Intransitive competition has the potential to be a powerful contributor to species coexistence, but there are few proposed biological mechanisms that could create intransitivities in natural communities. Using a three‐species model of competition for space, we demonstrate a mechanism for coexistence that combines a colonization–competition tradeoff between two species with the ability of a third species to preempt space from the other competitors. The combination of differential abilities to colonize, preempt, and overtake space creates a community where no single species can exclude both of its competitors. The dynamics of this kind of community are analogous to rock‐paper‐scissors competition, and the three‐species community can persist even though not all pairs of species can coexist in isolation. In distinction to prior results, this is a mechanism of intransitivity that does not require nonhierarchical local interference competition. We present parameter estimates from a subtidal marine community illustrating how documented competitive traits can lead to preemption‐based intransitivities in natural communities, and we describe methods for an empirical test of the occurrence of this mechanism.  相似文献   

4.
Microbes colonizing a surface often experience colony growth dynamics characterized by an initial phase of spatial clonal expansion followed by collision between neighboring colonies to form potentially genetically heterogeneous boundaries. For species with life cycles consisting of repeated surface colonization and dispersal, these spatially explicit “expansion‐collision dynamics” generate periodic transitions between two distinct selective regimes, “expansion competition” and “boundary competition,” each one favoring a different growth strategy. We hypothesized that this dynamic could promote stable coexistence of expansion‐ and boundary‐competition specialists by generating time‐varying, negative frequency‐dependent selection that insulates both types from extinction. We tested this experimentally in budding yeast by competing an exoenzyme secreting “cooperator” strain (expansion–competition specialists) against nonsecreting “defectors” (boundary–competition specialists). As predicted, we observed cooperator–defector coexistence or cooperator dominance with expansion–collision dynamics, but only defector dominance otherwise. Also as predicted, the steady‐state frequency of cooperators was determined by colonization density (the average initial cell–cell distance) and cost of cooperation. Lattice‐based spatial simulations give good qualitative agreement with experiments, supporting our hypothesis that expansion–collision dynamics with costly public goods production is sufficient to generate stable cooperator–defector coexistence. This mechanism may be important for maintaining public–goods cooperation and conflict in microbial pioneer species living on surfaces.  相似文献   

5.
Explaining the maintenance of genetic variation in characters associated with Darwinian fitness is a preoccupation of evolutionary biologists. Spatial or temporal variation in the environment can certainly promote polymorphism, yet even populations of ‘model organisms’, like fruit flies, kept on invariant protocols for hundreds of generations in the laboratory often show fitness variation that exceeds what would be expected from the input of new mutations alone. Such observations suggest either complexities of selection or of genetic architecture, and offer a powerful tool for the study of mechanisms that promote stable polymorphism. In this issue of Molecular Ecology, Zhang et al. ( 2013 ) report examples of nontransitivity in the outcome of postcopulatory sexual selection in the fruit fly, Drosophila, that follow the rules of the popular stalemate‐breaking game roshambo – or rock, paper, scissors (RPS). The important feature of RPS is that while each strategy beats one other, it in turn is beaten by the third. Using chromosome extraction lines, the authors confirm earlier findings that the outcome of postcopulatory sexual selection via sperm competition for a male depends, in part, upon the competitor male's genotype. But taking it one step further, they demonstrate the nontransitivities between males required for circular RPS cycles in sperm competition between males, and are able to identify at least four associated loci. Because the postmating phenotype involves hundreds of potentially interacting peptides and receptors, this is an important step to understanding the persistence of variation in a critical component of male fitness.  相似文献   

6.
The toxicity of a harmful algal bloom is strongly determined by the relative abundance of non-toxic and toxic genotypes and might therefore be regulated by competition for growth-limiting resources. Here, we studied how the toxic Microcystis aeruginosa strain PCC 7806 and a non-toxic mutant compete for nitrogen and phosphorus under constant and pulsed nutrient supply. Our monoculture and competition experiments show that these closely related genotypes have distinct nutrient physiologies and that they differ in their ability to compete for nitrogen and phosphorus. The toxic wild type won the competition under nitrogen limitation, while the non-toxic mutant dominated under phosphorus limitation. Pulses of both nitrogen and phosphorus increased the dominance of the toxic genotype, which lead to an even faster competitive exclusion of the non-toxic genotype under nitrogen pulses and to coexistence of both genotypes under phosphorus pulses. Our findings indicate that the genotype level dynamics driven by resource competition can be an important factor in determining cyanobacterial bloom toxicity.  相似文献   

7.
Natural populations of the bloom forming cyanobacterium Microcystis are typically composed of several distinct genotypes. Using Microcystis strains that differ in growth rate, microcystin production and colony formation, we conducted a laboratory experiment in the presence and absence of a grazer, the water flea Daphnia, to investigate whether interactions among strains can be predicted from functional traits, and whether the outcome of competition between strains is influenced by a grazer. Two toxic and two non‐toxic Microcystis strains, isolated from a single lake, were grown during four weeks as single strains, in all possible combinations of two strains and all together, in the presence and absence of Daphnia magna. The relative abundance of strains in the populations was assessed using denaturing gradient gel electrophoresis, and the growth rate of each strain in mixed populations was compared to its growth rate in monoculture to determine interactions between strains. The observed interactions were strain‐specific, and the relative abundances of strains in mixed populations could be partially explained by taking toxicity and colony formation into account. Importantly, some of the interactions were strongly altered by the presence of Daphnia. Daphnia induced colony formation in one strain, which then became a better competitor. Daphnia grazing also caused a higher evenness in the populations, both through a weakening of competitive interactions as well as by facilitation effects. Strong facilitation effects were due to non‐toxic strains benefiting from the protection offered by toxic strains in the presence of predation. Overall, our results emphasize the presence of strong competitive interactions between Microcystis strains in the absence of grazing, whereas indirect positive interactions are prevalent in the presence of a generalist grazer. Our results suggest that differences in functional traits and grazer‐mediated facilitation effects may enhance coexistence of Microcystis strains, including toxic and non‐toxic strains.  相似文献   

8.
Chen B  Kang L 《Oecologia》2005,144(2):187-195
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

9.
Heteromyopia and the spatial coexistence of similar competitors   总被引:7,自引:2,他引:5  
Most spatial models of competing species assume symmetries in the spatial scales of dispersal and interactions. This makes analysis tractable, and has led to the conclusion that segregation of species in space does not promote coexistence. However, these symmetries leave parts of the parameter space uninvestigated. Using a moment‐approximation method, we present a spatial version of the Lotka–Volterra competition equations to investigate effects of removing symmetries in the distances over which individuals disperse and interact. Some spatial segregation of the species always comes about due to competition, and such segregation does not necessarily lead to coexistence. But, if interspecific competition occurs over shorter distances than intraspecific competition (heteromyopia), spatial segregation becomes strong enough to promote coexistence. Such coexistence is most likely when the species have similar dynamics, in contrast to the competition–colonization trade‐off that requires large competitive differences between species.  相似文献   

10.
For many species, the outcome of competition for space in homogeneous habitats depends upon relative rates of growth and overgrowth. Size dependence in competition occurs when this balance shifts due to the growth of one or both species. For example, the ability of coral to compete with certain species of crustose coralline algae (CCA) may depend on whether coral colonies are large enough to avoid being overgrown. Spatially implicit models suggest size refuges from competition can improve the persistence of species with a vulnerable life stage. We use spatially explicit simulation models to explore size dependence in competition between coral and competitively dominant CCA in well lit habitat. We determine what conditions allow coral to use size refuges and whether refuges improve the recovery of coral after disturbance. Local interactions in explicit space prevent the maturation of coral into size refuges unless coral grows more rapidly than CCA or coral colonies are allowed to fuse, and mortality mechanisms can limit long‐term persistence even if the refuge is achieved. We contrast results with analogous differential equation models, with and without an explicit maturation delay, to demonstrate how the predicted outcome of competition is frequently reversed when local interactions and individual‐based dynamics are included in models of size‐dependent competition.  相似文献   

11.
The interactions between plants and arbuscular mycorrhizal fungi (AMF) maintain a crucial link between macroscopic organisms and the soil microbial world. These interactions are of extreme importance for the diversity of plant communities and ecosystem functioning. Despite this importance, only recently has the structure of plant–AMF interaction networks been studied. These recent studies, which used genetic data, suggest that these networks are highly structured, very similar to plant–animal mutualistic networks. However, the assembly process of plant–AMF communities is still largely unknown, and an important feature of plant–AMF interactions has not been incorporated: they occur at an extremely localized scale. Studying plant–AMF networks in a spatial context seems therefore a crucial step. This paper studies a plant–AMF spatial co‐occurrence network using novel methodology based on information theory and a unique set of spatially explicit species‐level data. We apply three null models of which only one accounts for spatial effects. We find that the data show substantial departures from null expectations for the two non‐spatial null models. However, for the null model considering spatial effects, there are few significant co‐occurrences compared with the other two null models. Thus, plant–AMF spatial co‐occurrences seem to be mostly explained by stochasticity, with a small role for other factors related to plant–AMF specialization. Furthermore, we find that the network is not significantly nested or modular. We conclude that this plant–AMF spatial co‐occurrence network lacks substantial structure and, therefore, plants and AMF species do not track each other over space. Thus, random encounters seem more important in the first step of the assembly of plant–AMF communities. Synthesis The symbiotic interaction between plants and arbuscular mycorrhizal fungi (AMF) is crucial for ecosystem functioning. However, the factors affecting the assembly of plant‐AMF communities are poorly understood. An important factor of the assembly of plant‐AMF communities has been overlooked: plant‐AMF interactions occur at a localized spatial scale. Our study investigated the importance of space in the structure of plant‐AMF communities. We studied a plant‐AMF spatial co‐occurrence network using a unique set of spatially explicit data and applied three null models. We found that plant‐AMF spatial co‐occurrences seem to be mostly explained by stochasticity. In particular, our study shows that this plant‐AMF spatial co‐occurrence network lacks substantial structure and, therefore, plants and AMF species do not track each other over space. Thus, random encounters seem to drive the assembly of plant‐AMF communities.  相似文献   

12.
Most of the classical theory on species coexistence has been based on species‐level competitive trade‐offs. However, it is becoming apparent that plant species display high levels of trait plasticity. The implications of this plasticity are almost completely unknown for most coexistence theory. Here, we model a competition–colonisation trade‐off and incorporate trait plasticity to evaluate its effects on coexistence. Our simulations show that the classic competition–colonisation trade‐off is highly sensitive to environmental circumstances, and coexistence only occurs in narrow ranges of conditions. The inclusion of plasticity, which allows shifts in competitive hierarchies across the landscape, leads to coexistence across a much broader range of competitive and environmental conditions including disturbance levels, the magnitude of competitive differences between species, and landscape spatial patterning. Plasticity also increases the number of species that persist in simulations of multispecies assemblages. Plasticity may generally increase the robustness of coexistence mechanisms and be an important component of scaling coexistence theory to higher diversity communities.  相似文献   

13.
This article introduces a two-strain spatially explicit SIS epidemic model with space-dependent transmission parameters. We define reproduction numbers of the two strains, and show that the disease-free equilibrium will be globally stable if both reproduction numbers are below one. We also introduce the invasion numbers of the two strains which determine the ability of each strain to invade the single-strain equilibrium of the other strain. The main question that we address is whether the presence of spatial structure would allow the two strains to coexist, as the corresponding spatially homogeneous model leads to competitive exclusion. We show analytically that if both invasion numbers are larger than one, then there is a coexistence equilibrium. We devise a finite element numerical method to numerically confirm the stability of the coexistence equilibrium and investigate various competition scenarios between the strains. Finally, we show that the numerical scheme preserves the positive cone and converges of first order in the time variable and second order in the space variables.  相似文献   

14.
This article introduces a two-strain spatially explicit SIS epidemic model with space-dependent transmission parameters. We define reproduction numbers of the two strains, and show that the disease-free equilibrium will be globally stable if both reproduction numbers are below one. We also introduce the invasion numbers of the two strains which determine the ability of each strain to invade the single-strain equilibrium of the other strain. The main question that we address is whether the presence of spatial structure would allow the two strains to coexist, as the corresponding spatially homogeneous model leads to competitive exclusion. We show analytically that if both invasion numbers are larger than one, then there is a coexistence equilibrium. We devise a finite element numerical method to numerically confirm the stability of the coexistence equilibrium and investigate various competition scenarios between the strains. Finally, we show that the numerical scheme preserves the positive cone and converges of first order in the time variable and second order in the space variables.  相似文献   

15.
Sami Aikio 《Oikos》2004,104(1):51-58
Individuals allocate resources to the expansion of their foraging area and those resources are no longer available for the traits that determine how well those individuals are able to protect their foraging area against competitors. The resulting trade‐off between foraging area size and the traits associated with the ability to compete for the resources within the foraging area applies to ecological scenarios as different as territorial defence by individuals and colonies, and light competition in plants. Whether the trade‐off affects species performance in competition for resources at the area of overlap between foraging areas depends on the symmetry of resource division. In symmetric competition resources are divided equally between the competitors, while in asymmetric competition the individual with the smallest foraging area, and consequently the greatest competitive ability, gains all the resources. Competition may also be a combination of the symmetric and asymmetric processes. I studied the effects of competitive asymmetry on population dynamics and coexistence of two annual species with different sized foraging areas using an individual‐based spatially explicit simulation model. Symmetric competition favoured the species with the larger foraging area and did not allow coexistence. Competitive asymmetry favoured the species with smaller foraging area and allowed coexistence, which was due to the consequences of losing an asymmetric competition being more severe than losing a symmetric competition. The mechanism of coexistence is the larger foraging area's superiority in low population densities (little competition) and the smaller foraging area's ability to win a large foraging area when competition was intense. Competitive asymmetry and small size of both foraging areas led to population dynamics dominated by long‐term fluctuations of small intensity. Symmetric competition and large size of the foraging areas led to large short‐term fluctuations, which often resulted in the extinction of one or both of the species due to demographic stochasticity.  相似文献   

16.
Inouye BD 《Oecologia》2005,145(2):188-196
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

17.
In addition to their fundamental role in nutrient recycling, saprobiotic microorganisms may be considered as typical consumers of food‐limited ephemeral resource patches. As such, they may be engaged in inter‐specific competition with saprophagous animals feeding from the same resource. Bacteria and filamentous fungi are known to synthesise secondary metabolites, some of which are toxic and have been proposed to deter or harm animals. The microorganisms may, however, also be negatively affected if saprophagous animals do not avoid microbe‐laden resources but feed in the presence of microbial competitors. We hypothesised that filamentous fungi compete with saprophagous insects, whereby secondary metabolites provide a chemical shield against the insect competitors. For testing this, we developed a new ecological model system representing a case of animal–microbe competition between saprobiotic organisms, comprising Drosophila melanogaster and species of the fungus Aspergillus (A. nidulans, A. fumigatus, A. flavus). Infestation of Drosophila breeding substrate with proliferating fungal colonies caused graduated larval mortality that strongly depended on mould species and colony age. Confrontation with conidiospores only, did not result in significant changes in larval survival, suggesting that insect death may not be ascribed to pathogenic effects. When confronted with colonies of transgenic fungi that lack the ability to express the global secondary metabolite regulator LaeA (ΔlaeA), larval mortality was significantly reduced compared to the impact of the wild type strains. Yet, also in the ΔlaeA strains, inter‐specific variation in the influence on insect growth occurred. Competition with Drosophila larvae impaired fungal growth, however, wild type colonies of A. nidulans and A. flavus recovered more rapidly from insect competition than the corresponding ΔlaeA mutants (not in A. fumigatus). Our findings provide genetic evidence that toxic secondary metabolites synthesised by saprotrophic fungi may serve as a means to combat insect competitors. Variation in the ability of LaeA to control expression of various secondary metabolite gene clusters might explain the observed species‐specific variation in DrosophilaAspergillus competition.  相似文献   

18.
Michael E. Fraker  Barney Luttbeg 《Oikos》2012,121(12):1935-1944
We developed a spatially‐explicit individual‐based model to study how limited perceptual and movement ranges affect spatial predator–prey interactions. Earlier models of ‘predator–prey space games’ were often developed by modifying ideal free distribution models, which are spatially‐implicit and also assume that individuals are omniscient, although some more recent models have relaxed these assumptions. We found that under some conditions, the spatially‐explicit model generated similar predictions to previous models. However, the model showed that limited range in a spatially‐explicit context generated different predictions when 1) predator density and range are both small, and 2) when the predator movement range varied while the prey range was small. The model suggests that the differences were the result of 1) movement range changing the value of information sources and thus changing the behavior of individual predators and prey and 2) movement range limiting the ability of individuals to exploit the environment.  相似文献   

19.
Plants interact simultaneously with each other and with soil biota, yet the relative importance of competition vs. plant–soil feedback (PSF) on plant performance is poorly understood. Using a meta‐analysis of 38 published studies and 150 plant species, we show that effects of interspecific competition (either growing plants with a competitor or singly, or comparing inter‐ vs. intraspecific competition) and PSF (comparing home vs. away soil, live vs. sterile soil, or control vs. fungicide‐treated soil) depended on treatments but were predominantly negative, broadly comparable in magnitude, and additive or synergistic. Stronger competitors experienced more negative PSF than weaker competitors when controlling for density (inter‐ to intraspecific competition), suggesting that PSF could prevent competitive dominance and promote coexistence. When competition was measured against plants growing singly, the strength of competition overwhelmed PSF, indicating that the relative importance of PSF may depend not only on neighbour identity but also density. We evaluate how competition and PSFs might interact across resource gradients; PSF will likely strengthen competitive interactions in high resource environments and enhance facilitative interactions in low‐resource environments. Finally, we provide a framework for filling key knowledge gaps and advancing our understanding of how these biotic interactions influence community structure.  相似文献   

20.
Competition is one of the main drivers of dispersal, which can be an important mechanism to achieve permanent or temporal coexistence of multiple species. This coexistence can be achieved by a dispersal‐competition tradeoff, spatial store effects or neutral dynamics. Here we test the effect of inter‐ and intraspecific competition on dispersal of four species of the marine nematode species complex Litoditis marina. A previous study in closed microcosms without a possibility for dispersal had demonstrated pronounced interspecific competition, leading to the exclusion of one species. We now investigated whether 1) the dispersal is affected by interspecific interactions, by intraspecific competition (density) or by food availability, 2) the dispersal dynamics influence assemblage composition and can lead to co‐occurrence of the species, and 3) the abiotic environment (here salinity) can affect these dynamics. We show that density is the main driver for dispersal in two of the four species. Dispersal of a third species always started at the same time irrespective of density, whereas in the fourth species interspecific interactions accelerated dispersal. Remarkably, this fourth species was not a strong competitor, suggesting that a dispersal–competition tradeoff does not explain the observed coexistence. Salinity did not alter the timing of dispersal when interspecific interactions were present but did affect assemblage composition. Consequently, spatial store effects may influence coexistence. All four species co‐occurred in fairly stable abundances throughout the present experiment indicating the importance of species specific dispersal strategies for coexistence. Co‐occurrence can be facilitated because competition is postponed or avoided by dispersal. Neutral dynamics also played a role as intra‐ and interspecific competition were of similar importance in three of the four species. We conclude that dispersal is a driver of the coexistence of closely related nematode species, and that population density and interspecific interactions shape these dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号