首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental differences among populations are expected to lead to local adaptation, while spatial or temporal environmental variation within a population will favour evolution of phenotypic plasticity. As plasticity itself can be under selection, locally adapted populations can vary in levels of plasticity. Nine‐spined stickleback (Pungitius pungitius) originating from isolated ponds (low piscine predation risk, high competition) vs. lake and marine populations (high piscine predation risk, low competition) are known to be morphologically adapted to their respective environments. However, nothing is known about their ability to express phenotypic plasticity in morphology in response to perceived predation risk or food availability/competition. We studied predator‐induced phenotypic plasticity in body shape and armour of marine and pond nine‐spined stickleback in a factorial common garden experiment with two predator treatments (present vs. absent) and two feeding regimes (low vs. high). The predation treatment did not induce any morphological shifts in fish from either habitat or food regime. However, strong habitat‐dependent differences between populations as well as strong sexual dimorphism in both body shape and armour were found. The lack of predator‐induced plasticity in development of the defence traits (viz. body armour and body depth) suggests that morphological anti‐predator traits in nine‐spined stickleback are strictly constitutive, rather than inducible. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

2.
Sexual size dimorphism (SSD) is a common phenomenon in animals and varies widely among species and among populations within species. Much of this variation is likely due to variance in selection on females vs. males. However, environmental variables could have different effects on females vs. males, causing variation in dimorphism. In this study, we test the differential‐plasticity hypothesis, stating that sex‐differential plasticity to environmental variables generates among‐population variation in the degree of sexual dimorphism. We examined the effect of temperature (22, 25, 28, and 31 °C) on sexual dimorphism in four populations of the cockroach Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), collected at various latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31 °C) and smallest at the lowest temperature (22 °C). There is variation in the degree of SSD among populations (sex*population interaction), but differences between the sexes in their plastic responses (sex*temperature interaction) were not observed for body size. Our results indicated that sex‐differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.  相似文献   

3.
Uncovering factors that shape variation in brain morphology remains a major challenge in evolutionary biology. Recently, it has been shown that brain size is positively associated with level of parental care behavior in various taxa. One explanation for this pattern is that the cognitive demands of performing complex parental care may require increased brain size. This idea is known as the parental brain hypothesis (PBH). We set out to test the predictions of this hypothesis in wild populations of threespine stickleback (Gasterosteus aculeatus). These fish are commonly known to exhibit (1) uniparental male care and (2) sexual dimorphism in brain size (males>females). To test the PBH, we took advantage of the existence of closely related populations of stickleback that display variation in parental care behavior: common marine threespine sticklebacks (uniparental male care) and white threespine sticklebacks (no care). To begin, we quantified genetic differentiation among two common populations and three white populations from Nova Scotia. We found overall low differentiation among populations, although FST was increased in between‐type comparisons. We then measured the brain weights of males and females from all five populations along with two additional common populations from British Columbia. We found that sexual dimorphism in brain size is reversed in white stickleback populations: males have smaller brains than females. Thus, while several alternatives need to be ruled out, the PBH appears to be a reasonable explanation for sexual dimorphism in brain size in threespine sticklebacks.  相似文献   

4.
1. Modification of behaviours in the presence of predators or predation cues is widespread among animals. The costs of a behavioural change in the presence of predators or predation cues depend on fitness effects of lost feeding opportunities and, especially when organisms are sexually dimorphic in size or timing of maturation, these costs are expected to differ between the sexes. 2. Larval Aedes triseriatus (Say) (Diptera: Culicidae) were used to test the hypothesis that behavioural responses of the sexes to predation cues have been selected differently due to different energy demands. 3. Even in the absence of water‐borne predation cues, hungry females (the larger sex) spent more time browsing than did males, indicating a difference in energy needs. 4. In the presence of predation cues, well‐fed larvae of both sexes reduced their activity more than did hungry larvae, and males shifted away from high‐risk behaviours to a greater degree than did females, providing the first evidence of sex‐specific antipredator behaviour in foraging mosquito larvae. 5. Because sexual size dimorphism is common across taxa, and energetic demands are probably correlated with size dimorphism, this research demonstrates the importance of investigating sex‐specific behaviour and behavioural responses to enemies, and cautions against generalising results between sexes.  相似文献   

5.
Female‐biased sexual dimorphism in size at maturity is a common pattern observed in freshwater fishes with indeterminate growth, yet can vary in magnitude among populations for reasons that are not well understood. According to sex‐specific optimization models, female‐biased sexual size dimorphism can evolve due to sexual selection favouring earlier maturation by males, even when sexes are otherwise similar in their growth and mortality regimes. The magnitude of sexual size dimorphism is expected to depend on mortality rate. When mortality rates are low, both males and females are expected to mature at older ages and larger sizes, with size determined by the von Bertalanffy growth equation. The difference between size at maturity in males and females becomes reduced when maturing at older ages, closer to asymptotic size. This phenomenon is called von Bertalanffy buffering. The predicted relationship between the magnitude of female‐biased sexual dimorphism in age and size at maturity and mortality rate was tested in a comparative analysis of lake whitefish Coregonus clupeaformis from 26 populations across a broad latitudinal range in North America. Most C. clupeaformis populations displayed female‐biased sexual dimorphism in size and age at 50% maturity. As predicted, female‐biased sexual size dimorphism was less extreme among lower mortality, high‐latitude populations.  相似文献   

6.
This study examined sexual dimorphism of head morphology in the ecologically diverse three‐spined stickleback Gasterosteus aculeatus. Male G. aculeatus had longer heads than female G. aculeatus in all 10 anadromous, stream and lake populations examined, and head length growth rates were significantly higher in males in half of the populations sampled, indicating that differences in head size increased with body size in many populations. Despite consistently larger heads in males, there was significant variation in size‐adjusted head length among populations, suggesting that the relationship between head length and body length was flexible. Inter‐population differences in head length were correlated between sexes, thus population‐level factors influenced head length in both sexes despite the sexual dimorphism present. Head shape variation between lake and anadromous populations was greater than that between sexes. The common divergence in head shape between sexes across populations was about twice as important as the sexual dimorphism unique to each population. Finally, much of the sexual dimorphism in head length was due to divergence in the anterior region of the head, where the primary trophic structures were found. It is unclear whether the sexual dimorphism was due to natural selection for niche divergence between sexes or sexual selection. This study improves knowledge of the magnitude, growth rate divergence, inter‐population variation and location of sexual dimorphism in G. aculeatus head morphology.  相似文献   

7.
Sex-specific plasticity, the differential response that the genome of males and females may have to different environments, is a mechanism that can affect the degree of sexual dimorphism. Two adaptive hypotheses have been proposed to explain how sex-specific plasticity affects the evolution of sexual size dimorphism. The adaptive canalization hypothesis states that the larger sex exhibits lesser plasticity compared to the smaller sex due to strong directional selection for a large body size, which penalizes individuals attaining sub-optimal body sizes. The condition-dependence hypothesis states that the larger sex exhibits greater plasticity than the smaller sex due to strong directional selection for a large body size favoring a greater sensitivity as an opportunistic mechanism for growth enhancement under favorable conditions. While the relationship between sex-specific plasticity and sexual dimorphism has been studied mainly in invertebrates, its role in long-lived vertebrates has received little attention. In this study we tested the predictions derived from these two hypotheses by comparing the plastic responses of body size and shape of males and females of the snapping turtle (Chelydra serpentina) raised under common garden conditions. Body size was plastic, sexually dimorphic, and the plasticity was also sex-specific, with males exhibiting greater body size plasticity relative to females. Because snapping turtle males are larger than females, sexual size dimorphism in this species appears to be driven by an increased plasticity of the larger sex over the smaller sex as predicted by the condition-dependent hypothesis. However, male body size was enhanced under relatively limited resources, in contrast to expectations from this model. Body shape was also plastic and sexually dimorphic, however no sex by environment interaction was found in this case. Instead, plasticity of sexual shape dimorphism seems to evolve in parallel for males and females as both sexes responded similarly to different environments.  相似文献   

8.
Stillwell RC  Fox CW 《Oecologia》2007,153(2):273-280
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.  相似文献   

9.
Intraspecific trends in freshwater mussel (unionoid) shells that are consistently associated with differences in the mussels' sex and/or parasitic infestation can potentially be used to reconstruct sex ratios or parasitic levels of modern and ancient unionoid populations. In contrast to morphological patterns within mammal species, such dimorphic trends within unionoid species are, however, poorly understood. This study investigates, for the first time, to what extent sex, trematode infection and indirect habitat effects determine shell morphology in the freshwater mussel Anodonta anatina. Three of the five study populations displayed significant sexual shell width dimorphism. Here, shells of females were significantly wider than males, probably as a result of altered shell growth to accommodate marsupial gills. In two of these populations, female shells were additionally significantly thinner than those of males, which could be a result of resource depletion by offspring production. Two other A. anatina populations showed no significant dimorphic patterns, and our results indicate that this interpopulational difference in the degree of sexual dimorphism may reflect the overarching effect of habitat on morphology. Thus, populations in the most favourable habitats exhibit faster growth rates, attain larger maximum sizes and produce more offspring, which results in more swollen gills and consequently more inflated shells of gravid females compared to less fecund populations. None of the populations showed any evidence for sexual dimorphism in overall size, growth rate, sagittal shape and density of shells. In addition to sexual dimorphisms, infestation by bucephalid trematode parasites (Rhipidocotyle sp.) significantly altered sagittal and lateral shell shape of A. anatina in one of the populations, with infected specimens growing wider and more elongated. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex‐linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin‐based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex‐linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin‐based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex‐linked genes generate variation in sexual dimorphism in melanin‐based traits.  相似文献   

11.
Many animal lineages exhibit allometry in sexual size dimorphism (SSD), known as ‘Rensch’s rule’. When applied to the interspecific level, this rule states that males are more evolutionary plastic in body size than females and that male‐biased SSD increases with body size. One of the explanations for the occurrence of Rensch’s rule is the differential‐plasticity hypothesis assuming that higher evolutionary plasticity in males is a consequence of larger sensitivity of male growth to environmental cues. We have confirmed the pattern consistent with Rensch’s rule among species of the gecko genus Paroedura and followed the ontogeny of SSD at three constant temperatures in a male‐larger species (Paroedura picta). In this species, males exhibited larger temperature‐induced phenotypic plasticity in final body size than females, and body size and SSD correlated across temperatures. This result supports the differential‐plasticity hypothesis and points to the role phenotypic plasticity plays in generating of evolutionary novelties.  相似文献   

12.
Selection pressures that act differently on males and females produce numerous differences between the sexes in morphology and behaviour. However, apart from the controversial report that males have slightly heavier brains than females in humans, evidence for substantial sexual dimorphism in brain size is scarce. This apparent sexual uniformity is surprising given that sexually distinct selection pressures are ubiquitous and that brains are one of the most plastic vertebrate organs. Here we demonstrate the highest level of sexual brain size dimorphism ever reported in any vertebrate: male three-spined stickleback of two morphs in an Icelandic lake have 23% heavier brains than females. We suggest that this dramatic sexual size dimorphism is generated by the many cognitively demanding challenges that males are faced in this species, such as an elaborate courtship display, the construction of an ornate nest and a male-only parental care system. However, we consider also alternative explanations for smaller brains in females, such as life-history trade-offs. Our demonstration of unprecedented levels of sexual dimorphism in brain size in the three-spined stickleback implies that behavioural and life-history differences among the sexes can have strong effects also on neural development and proposes new fields of research for understanding brain evolution.  相似文献   

13.
Evidence for phenotypic plasticity in brain size and the size of different brain parts is widespread, but experimental investigations into this effect remain scarce and are usually conducted using individuals from a single population. As the costs and benefits of plasticity may differ among populations, the extent of brain plasticity may also differ from one population to another. In a common garden experiment conducted with three‐spined sticklebacks (Gasterosteus aculeatus) originating from four different populations, we investigated whether environmental enrichment (aquaria provided with structural complexity) caused an increase in the brain size or size of different brain parts compared to controls (bare aquaria). We found no evidence for a positive effect of environmental enrichment on brain size or size of different brain parts in either of the sexes in any of the populations. However, in all populations, males had larger brains than females, and the degree of sexual size dimorphism (SSD) in relative brain size ranged from 5.1 to 11.6% across the populations. Evidence was also found for genetically based differences in relative brain size among populations, as well as for plasticity in the size of different brain parts, as evidenced by consistent size differences among replicate blocks that differed in their temperature.  相似文献   

14.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

15.
Male‐biased sexual dimorphism is extensive in New World spiny lizards (Sceloporus: Phrynosomatidae) and is particularly prominent in the polymorphic minor lizard Sceloporus minor. However, the possible relationship between patterns of sexual dimorphism and gonadal development is little known for most species. In this study, we explored aspects of sexual dimorphism in noncolor morphological traits in S. minor and characterized the gonadal cycle in males and females from each of two sites (El Enzuelado and La Manzana) in Hidalgo, México, differing in key ecological aspects linked to life‐history trait expression in other lizards. Males were generally larger than females in each population and expressed larger forms of several other morphological traits, although not all comparisons attained statistical significance. Both sexes attained reproductive maturity at a larger size in El Enzuelado relative to La Manzana, and females from El Enzuelado had larger litters. Gonadal cycles differed substantially between the two populations and suggest that reproductive activity of males and females was synchronous at El Enzuelado and asynchronous at La Manzana, an unusual pattern. Geographic variation in sex‐specific responses to environmental variables may be at least partly responsible for the exceptional species diversity of spiny lizards in México.  相似文献   

16.
1. Given sexual size dimorphism, differential mortality owing to body size can lead to sex‐biased mortality, proximately biasing sex ratios. This mechanism may apply to mountain pine beetles, Dendroctonus ponderosae Hopkins, which typically have female‐biased adult populations (2 : 1) with females larger than males. Smaller males could be more susceptible to stresses than larger females as developing beetles overwinter and populations experience high mortality. 2. Survival of naturally‐established mountain pine beetles during the juvenile stage and the resulting adult sex ratios and body sizes (volume) were studied. Three treatments were applied to vary survival in logs cut from trees containing broods of mountain pine beetles. Logs were removed from the forest either in early winter, or in spring after overwintering below snow or after overwintering above snow. Upon removal, logs were placed at room temperature to allow beetles to complete development under similar conditions. 3. Compared with beetles from logs removed in early winter, mortality was higher and the sex ratio was more female‐biased in overwintering logs. The bias increased with overwinter mortality. However, sex ratios were female‐biased even in early winter, so additional mechanisms, other than overwintering mortality, contributed to the sex‐ratio bias. Body volume varied little relative to sex‐biased mortality, suggesting other size‐independent causes of male‐biased mortality. 4. Overwintering mortality is considered a major determinant of mountain pine beetle population dynamics. The disproportionate survival of females, who initiate colonisation of live pine trees, may affect population dynamics in ways that have not been previously considered.  相似文献   

17.
An adaptive explanation for environmental sex determination is that it promotes sexual size dimorphism when larger size benefits one sex more than the other. That is, if growth rates are determined by environment during development, then it is beneficial to match developmental environment to the sex that benefits more from larger size. However, larger size may also be a consequence of larger size at hatching or growing for a longer time, i.e., delayed age at first reproduction. Therefore, the adaptive significance of sexual size dimorphism and environmental sex determination can only be interpreted within the context of both growth and maturation. In addition, in those animals that continue to grow after maturation, sexual size dimorphism at age of first reproduction could differ from sexual size dimorphism at later ages as growth competes for energy with reproduction and maintenance. I compared growth using annuli on carapace scales in two species of box turtles (Terrapene carolina and T. ornata) that have similar patterns of environmental sex determination but, reportedly, have different patterns of sexual size dimorphism. In the populations I studied, sexual size dimorphism was in the same direction in both species; adult females were, on average, larger than adult males. This was due in part to males maturing earlier and therefore at smaller sizes than females. In spite of similar patterns of environmental sex determination, patterns of growth differed between the species. In T. carolina, males grew faster than females as juveniles but females had the larger asymptotic size. In T. ornata, males and females grew at similar rates and had similar asymptotic sizes. Sexual size dimorphism was greatest at maturation because, although males matured younger and smaller, they grew more as adults. There was, therefore, no consistent pattern of faster growth for females that may be ascribed to developmental temperature. Received: 20 March 1996 / Accepted: 10 March 1998  相似文献   

18.
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype‐by‐sex interaction (G×S) and sex‐specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross‐sex genetic correlations are close to zero, suggesting sex‐linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex‐specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male‐biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex‐specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.  相似文献   

19.
Timing of maturation is an important life‐history trait that is likely to be subjected to strong natural selection. Although population differences in timing of maturation have been frequently reported in studies of wild animal populations, little is known about the genetic basis of this differentiation. Here, we investigated population and sex differences in timing of maturation within and between two nine‐spined stickleback (Pungitius pungitius) populations in a laboratory breeding experiment. We found that fish from the high‐predation marine population matured earlier than fish from the low‐predation pond population and males matured earlier than females. Timing of maturation in both reciprocal hybrid crosses between the two populations was similar to that in the marine population, suggesting that early timing of maturation is a dominant trait, whereas delayed timing of maturation in the pond is a recessive trait. Thus, the observed population divergence is suggestive of strong natural selection against early maturation in the piscine‐predator‐free pond population.  相似文献   

20.
Sexual dimorphism can evolve when males and females differ in phenotypic optima. Genetic constraints can, however, limit the evolution of sexual dimorphism. One possible constraint is derived from alleles expressed in both sexes. Because males and females share most of their genome, shared alleles with different fitness effects between sexes are faced with intralocus sexual conflict. Another potential constraint is derived from genetic correlations between developmental stages. Sexually dimorphic traits are often favoured at adult stages, but selected against as juvenile, so developmental decoupling of traits between ontogenetic stages may be necessary for the evolution of sexual dimorphism in adults. Resolving intralocus conflicts between sexes and ages is therefore a key to the evolution of age‐specific expression of sexual dimorphism. We investigated the genetic architecture of divergence in the ontogeny of sexual dimorphism between two populations of the Japanese medaka (Oryzias latipes) that differ in the magnitude of dimorphism in anal and dorsal fin length. Quantitative trait loci (QTL) mapping revealed that few QTL had consistent effects throughout ontogenetic stages and the majority of QTL change the sizes and directions of effects on fin growth rates during ontogeny. We also found that most QTL were sex‐specific, suggesting that intralocus sexual conflict is almost resolved. Our results indicate that sex‐ and age‐specific QTL enable the populations to achieve optimal developmental trajectories of sexually dimorphic traits in response to complex natural and sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号