首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Aim The role of dispersal versus vicariance for plant distribution patterns has long been disputed. We study the temporal and spatial diversification of Ranunculeae, an almost cosmopolitan tribe comprising 19 genera, to understand the processes that have resulted in the present inter‐continental disjunctions. Location All continents (except Antarctica). Methods Based on phylogenetic analyses of nuclear and chloroplast DNA sequences for 18 genera and 89 species, we develop a temporal–spatial framework for the reconstruction of the biogeographical history of Ranunculeae. To estimate divergence dates, Bayesian uncorrelated rates analyses and four calibration points derived from geological, fossil and external molecular information were applied. Parsimony‐based methods for dispersal–vicariance analysis (diva and Mesquite ) and a maximum likelihood‐based method (Lagrange ) were used for reconstructing ancestral areas. Six areas corresponding to continents were delimited. Results The reconstruction of ancestral areas is congruent in the diva and maximum likelihood‐based analyses for most nodes, but Mesquite reveals equivocal results at deep nodes. Our study suggests a Northern Hemisphere origin for the Ranunculeae in the Eocene and a weakly supported vicariance event between North America and Eurasia. The Eurasian clade diversified between the early Oligocene and the late Miocene, with at least three independent migrations to the Southern Hemisphere. The North American clade diversified in the Miocene and dispersed later to Eurasia, South America and Africa. Main conclusions Ranunculeae diversified between the late Eocene and the late Miocene. During this time period, the main oceanic barriers already existed between continents and thus dispersal is the most likely explanation for the current distribution of the tribe. In the Southern Hemisphere, a vicariance model related to the break‐up of Gondwana is clearly rejected. Dispersals between continents could have occurred via migration over land bridges, such as the Bering Land Bridge, or via long‐distance dispersal.  相似文献   

2.
Aim To investigate the historical biogeography of the pantropical flowering plant family Hernandiaceae (Laurales), which today comprises 62 species in five genera. Location Hernandiaceae occur in Africa (9 species), Madagascar (4), the Neotropics (25), Australia (3), southern China, Indochina, Malesia, and on numerous Pacific Islands (32). These numbers include two widespread species, Hernandia nymphaeifolia, which ranges from East Africa to the Ogasawara Islands and New Caledonia, and Gyrocarpus americanus, thought to have a pantropical range. Methods We sampled 37 species from all genera, the widespread ones with multiple accessions, for a chloroplast DNA matrix of 2210 aligned nucleotides, and used maximum likelihood to infer species relationships. Divergence time estimation relied on an uncorrelated‐rates relaxed molecular clock calibrated with outgroup fossils of Lauraceae and Monimiaceae. Results The deepest split in the family is between a predominantly African–Madagascan–Malesian lineage comprising Hazomalania, Hernandia and Illigera, and an African–Neotropical lineage comprising Gyrocarpus and Sparattanthelium; this split may be 122 (110–134) Myr old. The stem lineages of the five genera date back at least to the Palaeocene, but six splits associated with transoceanic range disjunctions date only to the Oligocene and Miocene, implying long‐distance dispersal. It is inferred that Hernandia beninensis reached the West African islands of São Tomé and Bioko from the West Indies or the Guianas; Hernandia dispersed across the Pacific; and Illigera madagascariensis reached Madagascar from across the Indian Ocean. Main conclusions The disjunct ranges and divergence times of sister clades in the Hernandiaceae are partly congruent with the break‐up of West Gondwana, but mostly with later transoceanic dispersal. An exceptional ability to establish following prolonged oceanic dispersal may be largely responsible for the evolutionary persistence of this small clade.  相似文献   

3.
The biogeography of Gunnera L.: vicariance and dispersal   总被引:1,自引:1,他引:1  
Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty‐six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well‐known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade.  相似文献   

4.
5.
6.
7.
Aim The sequential break‐up of Gondwana is thought to be a dominant process in the establishment of shared biota across landmasses of the Southern Hemisphere. Yet similar distributions are shared by taxa whose radiations clearly post‐date the Gondwanan break‐up. Thus, determining the contribution of vicariance versus dispersal to seemingly Gondwanan biota is complex. The southern freshwater crayfishes (family Parastacidae) are distributed on Australia and New Guinea, South America, Madagascar and New Zealand and are unlikely to have dispersed via oceans, owing to strict freshwater limitations. We test the hypotheses that the break‐up of Gondwana has led to (1) a predominately east–west (((Australia, New Zealand: 80 Ma) Madagascar: 160–121 Ma) South America: 165–140 Ma), or (2) a southern (((Australia, South America: 52–35 Ma) New Zealand: 80 Ma) Madagascar: 160–121 Ma) pattern for parastacid crayfish. Further, we examine the evidence for a complete drowning of New Zealand and subsequent colonization by freshwater crayfish. Location Southern Hemisphere. Methods The evolutionary relationships among the 15 genera of Parastacidae were reconstructed using mitochondrial [16S, cytochrome c oxidase subunit I (COI)] and nuclear (18S, 28S) sequence data and maximum likelihood and Bayesian methods of phylogenetic reconstruction. A Bayesian (multidivtime ) molecular dating method using six fossil calibrations and phylogenetic inference was used to estimate divergence time among crayfish clades on Gondwanan landmasses. Results The South American crayfish are monophyletic and a sister group to all other southern crayfish. Australian crayfish are not monophyletic, with two Tasmanian genera, Spinastacoides and Ombrastacoides, forming a clade with New Zealand and Malagasy crayfish (both monophyletic). Divergence of crayfish among southern landmasses is estimated to have occurred around the Late Jurassic to Early Cretaceous (109–178 Ma). Main conclusions The estimated phylogenetic relationships and time of divergence among the Southern Hemisphere crayfishes were consistent with an east–west pattern of Gondwanan divergence. The divergence between Australia and New Zealand (109–160 Ma) pre‐dated the rifting at around 80 Ma, suggesting that these lineages were established prior to the break‐up. Owing to the age of the New Zealand crayfish, we reject the hypothesis that there was a complete drowning of New Zealand crayfish habitat.  相似文献   

8.
Although climatic niche conservatism has been assumed by a large number of studies focused on climatic niche evolution, there are examples of climatic niche diversification and adaptation to changing climates. In this article, we reconstruct a climatic niche of scaly tree ferns (Cyatheaceae) using a rigorous analytical procedure which combines climatic niche modelling with reconstruction of continuous characters given a phylogenetic hypothesis. To estimate the limits to climatic niches of species, we used climate envelope modelling and ordination. Ancestral climatic niches of species were reconstructed by maximum likelihood and least‐squares analyses. We observed a trend towards niche conservatism with occasional events of niche transformations in scaly tree ferns. We discuss the implications of our study with respect to the potential and limitations for applications of niche modelling to evolutionary studies. We suggest that future studies of evolution of climatic niches could be considerably improved by employing approaches enabling reconstruction of continuous response to climatic gradients. Further progress may also be achieved by exploring models of character evolution other than the Brownian motion model. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 1–19.  相似文献   

9.
Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of biogeographical investigation due to limited potential for crossing marine barriers. Timescales for the origin and diversification of these groups are crucial tests of vicariant scenarios in which continental break‐ups shaped modern geographic distributions. Evolutionary chronologies are commonly estimated through node‐based palaeontological calibration of molecular phylogenies, but this approach ignores most of the temporal information encoded in the known fossil record of a given taxon. Here, we review the fossil record of freshwater fish clades with a distribution encompassing disjunct landmasses in the southern hemisphere. Palaeontologically derived temporal and geographic data were used to infer the plausible biogeographic processes that shaped the distribution of these clades. For seven extant clades with a relatively well‐known fossil record, we used the stratigraphic distribution of their fossils to estimate confidence intervals on their times of origin. To do this, we employed a Bayesian framework that considers non‐uniform preservation potential of freshwater fish fossils through time, as well as uncertainty in the absolute age of fossil horizons. We provide the following estimates for the origin times of these clades: Lepidosireniformes [125–95 million years ago (Ma)]; total‐group Osteoglossomorpha (207–167 Ma); Characiformes (120–95 Ma; a younger estimate of 97–75 Ma when controversial Cenomanian fossils are excluded); Galaxiidae (235–21 Ma); Cyprinodontiformes (80–67 Ma); Channidae (79–43 Ma); Percichthyidae (127–69 Ma). These dates are mostly congruent with published molecular timetree estimates, despite the use of semi‐independent data. Our reassessment of the biogeographic history of southern hemisphere freshwater fishes shows that long‐distance dispersals and regional extinctions can confound and erode pre‐existing vicariance‐driven patterns. It is probable that disjunct distributions in many extant groups result from complex biogeographic processes that took place during the Late Cretaceous and Cenozoic. Although long‐distance dispersals likely shaped the distributions of several freshwater fish clades, their exact mechanisms and their impact on broader macroevolutionary and ecological dynamics are still unclear and require further investigation.  相似文献   

10.
Sharpshooters (Cicadellinae), a large subfamily of the Cicadellidae, exhibit a global distribution and a broad array of ecological preferences. To explore the phylogenetic relationships and roles of global historical, biotic and biogeographic processes in the diversification of sharpshooters, we analysed DNA sequence data from three mitochondrial and two nuclear genes for 243 taxa representing all Cicadellinae tribes, generic groups, regional faunas and data of geographic distributions of sharpshooter species compiled from online databases and available literature. The maximum likelihood (ML) and Bayesian inference (BI) analyses strongly support the monophyletic clade including Cicadellinae and Phereurininae. Divergence time estimates and biogeographic analyses suggest that sharpshooters originated in the Neotropical region or were more widespread in Gondwana during the Early Cretaceous and diversified through a combination of ancient vicariance and dispersal following the evolution of angiosperm-dominated habitats. The earliest divergence during the Cretaceous gave rise to Oriental and New World lineages, the latter of which subsequently dispersed into the Old World and gave rise to the diverse endemic fauna of Madagascar. The Oriental lineage shows high diversity and endemism in tropical Asia and the Pacific, with striking distributional discontinuities in Wallacea. These results suggest that a combination of environmental and evolutionary factors including continental-scale vicariance, long-distance dispersal and diversification of terrestrial microhabitats and host plants may explain the diversity of the modern sharpshooter fauna.  相似文献   

11.
12.
Aim The aim of this study was to determine the contributions of Gondwanan vicariance and marine dispersal to the contemporary distribution of galaxiid fishes. This group has been central in arguments concerning the roles of dispersal and vicariance in the Southern Hemisphere, as some taxa have marine life history stages through which transoceanic dispersal may have been facilitated, yet other galaxiids are entirely restricted to freshwaters. Location Southern Hemisphere land masses of Gondwanan derivation. Methods Biogeographic hypotheses of Gondwanan vicariance and marine dispersal were tested using four lines of evidence: (1) concordance of species–area phylogenetic relationships, (2) molecular estimates of lineage divergence times with a priori expectations based on plate tectonics, (3) reconstructions of ancestral dispersal capabilities, and (4) reconstructions of distribution inheritance scenarios (using the dispersal–extinction–cladogenesis model to infer historical ranges and dispersal and extinction events). Results Phylogenetic relationships were reconstructed from 4531 mitochondrial and nuclear nucleotide characters, and 181 morphological characters, across 53 of the 56 presently recognized species. Phylogenetic relationships were generally well resolved and supported among galaxiids using the combined dataset, and conflicting relationships between molecular and morphological datasets typically received low topological support from either or both datasets. Transoceanic disjunctions were exhibited at 16 nodes, but only three pre‐dated relevant continental fragmentation events; furthermore, ancestral distribution inheritance scenarios for two of these nodes reflected cladogenesis within, rather than between, Gondwanan land masses, and ancestral marine dispersal capability could not be rejected for all three. Instead, the four lines of evidence surveyed suggest that Gondwanan vicariance occurred twice, but in both instances was preceded by marine dispersal between land masses, and in at least one instance was initiated by the cessation of marine dispersal subsequent to continental fragmentation. Main conclusions Gondwanan vicariance appears to have been preceded by marine dispersal in the few instances where it may explain contemporary galaxiid distribution, such that these biogeographic mechanisms may sometimes have a synergistic relationship.  相似文献   

13.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

14.
Aim A previous study of the allodapine bee genus Braunsapis suggested an African origin, with dispersal events into Madagascar and Asia, and from Asia into Australia. We re‐examine the phylogeny of this genus, using an expanded set of taxa from Madagascar and Malawi and additional sequence data, in order to determine the number of dispersals and the timeframe over which they occurred. Location Africa, Madagascar, Malawi, Asia and Australia. Methods One nuclear (EF‐1α F2) and two mitochondrial (CO1 and Cyt b) gene regions were sequenced for 36 allodapine bee species (including members of the genera Braunsapis, Nasutapis, Allodape, Allodapula, and Macrogalea) and one ceratinine species (Ceratina japonica). We used Bayesian analyses to examine phylogenetic structure and a penalized likelihood approach to estimate approximate ages for key divergences in our phylogeny. Results Our analyses indicate a tropical African origin for Braunsapis in the early Miocene followed by very early dispersal into Asia and then a subsequent dispersal, following Asian diversification, into Australia during the late Miocene. There have also been two dispersals of Braunsapis from Africa to Madagascar and this result, when combined with phylogenetic and biogeographical data for other allodapines, suggests that these bees have the ability to cross moderately large ocean expanses. These dispersals may have been aided by the West Wind Drift, but rafting across the Mozambique Channel is also possible, and could be aided by the existence of developmental stages that require minimal or no feeding and by tolerance to sea water and spume. Accumulating evidence suggests that many biogeographical patterns in the southern hemisphere may be better explained by dispersal than by Gondwanan vicariance hypotheses. Our results add to this growing body of data and raise the possibility that some puzzling trans‐Indian Ocean distributions may also be explained by historical dispersal events across oceanic barriers that now seem insuperable.  相似文献   

15.
16.
Transoceanic distributions have attracted the interest of scientists for centuries. Less attention has been paid to the evolutionary origins of ‘continent‐wide’ disjunctions, in which related taxa are distributed across isolated regions within the same continent. A prime example is the ‘Rand Flora’ pattern, which shows sister taxa disjunctly distributed in the continental margins of Africa. Here, we explore the evolutionary origins of this pattern using the genus Canarina, with three species: C. canariensis, associated with the Canarian laurisilva, and C. eminii and C. abyssinica, endemic to the Afromontane region in East Africa, as case study. We infer phylogenetic relationships, divergence times and the history of migration events within Canarina using Bayesian inference on a large sample of chloroplast and nuclear sequences. Ecological niche modelling was employed to infer the climatic niche of Canarina through time. Dating was performed with a novel nested approach to solve the problem of using deep time calibration points within a molecular dataset comprising both above‐species and population‐level sampling. Results show C. abyssinica as sister to a clade formed by disjunct C. eminii and C. canariensis. Miocene divergences were inferred among species, whereas infraspecific divergences fell within the Pleistocene–Holocene periods. Although C. eminii and Ccanariensis showed a strong genetic geographic structure, among‐population divergences were older in the former than in the latter. Our results suggest that Canarina originated in East Africa and later migrated across North Africa, with vicariance and aridification‐driven extinction explaining the 7000 km/7 million year divergence between the Canarian and East African endemics.  相似文献   

17.
18.
19.
Dispersal is a fundamental ecological process, yet demonstrating the occurrence and importance of long‐distance dispersal (LDD) remains difficult, having rarely been examined for widespread, non‐coastal plants. To address this issue, we integrated phylogenetic, molecular dating, biogeographical, ecological, seed biology and oceanographic data for the inland Urticaceae. We found that Urticaceae originated in Eurasia c. 69 Ma, followed by ≥ 92 LDD events between landmasses. Under experimental conditions, seeds of many Urticaceae floated for > 220 days, and remained viable after 10 months in seawater, long enough for most detected LDD events, according to oceanographic current modelling. Ecological traits analyses indicated that preferences for disturbed habitats might facilitate LDD. Nearly half of all LDD events involved dioecious taxa, so population establishment in dioecious Urticaceae requires multiple seeds, or occasional selfing. Our work shows that seawater LDD played an important role in shaping the geographical distributions of Urticaceae, providing empirical evidence for Darwin's transoceanic dispersal hypothesis.  相似文献   

20.
Aim Continental disjunctions in pantropical taxa have been explained by vicariance or long‐distance dispersal. The relative importance of these explanations in shaping current distributions may vary, depending on historical backgrounds or biological characteristics of particular taxa. We aimed to determine the geographical origin of the pantropical subfamily Chrysophylloideae (Sapotaceae) and the roles vicariance and dispersal have played in shaping its modern distribution. Location Tropical areas of Africa, Australasia and South America. Methods We utilized a recently published, comprehensive data set including 66 species and nine molecular markers. Bayesian phylogenetic trees were generated and dated using five fossils and the penalized likelihood approach. Distributional ranges of nodes were estimated using maximum likelihood and parsimony analyses. In both biogeographical and molecular dating analyses, phylogenetic and branch length uncertainty was taken into account by averaging the results over 2000 trees extracted from the Bayesian stationary sample. Results Our results indicate that the earliest diversification of Chrysophylloideae was in the Campanian of Africa c. 73–83 Ma. A narrow time interval for colonization from Africa to the Neotropics (one to three dispersals) and Australasia (a single migration) indicates a relatively rapid radiation of this subfamily in the latest Cretaceous to the earliest Palaeocene (c. 62–72 Ma). A single dispersal event from the Neotropics back to Africa during the Neogene was inferred. Long‐distance dispersal between Australia and New Caledonia occurred at least four times, and between Africa and Madagascar on multiple occasions. Main conclusions Long‐distance dispersal has been the dominant mechanism for range expansion in the subfamily Chrysophylloideae. Vicariance could explain South American–Australian disjunction via Antarctica, but not the exchanges between Africa and South America and between New Caledonia and Australia, or the presence of the subfamily in Madagascar. We find low support for the hypothesis that the North Atlantic land bridge facilitated range expansions at the Palaeocene/Eocene boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号