首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant range boundaries are generally considered to reflect abiotic conditions; however, a rise in negative or decline in positive species interactions at range margins may contribute to these stable boundaries. While evidence suggests that pollinator mutualisms may decline near range boundaries, little is known about other important plant mutualisms, including microbial root symbionts. Here, we used molecular methods to characterize root‐associated fungal communities in populations of two related temperate tree species from across the species’ range in the eastern United States. We found that ectomycorrhizal fungal richness on plant roots declined with distance from the centre of the host species range. These patterns were not evident in nonmycorrhizal fungal communities on roots nor in fungal communities in bulk soil. Climatic and soil chemical variables could not explain these biogeographic patterns, although these abiotic gradients affected other components of the bulk soil and rhizosphere fungal community. Depauperate ectomycorrhizal fungal communities may represent an underappreciated challenge to marginal tree populations, especially as rapid climate change pushes these populations outside their current climate niche.  相似文献   

2.
We report in this study for the first time the occurrence of bacterial spot of pepper in Iran and both phenotypic and genetic characterization of its causal agent, Xanthomonas euvesicatoria. Pepper plants grown in 15 of 30 surveyed private gardens and commercial fields were infected by the pathogen in Marand County, East Azerbaijan Province, north‐western Iran. The obtained strains of X. euvesicatoria had different amylolytic and pectolytic activities compared with those reported for this species elsewhere. Pathogenicity tests showed that strains isolated from diseased pepper are able to infect tomato, in addition to pepper. Host range of the pathogen was assessed on eight annual plant species including crops and weeds by measuring the population dynamics. The host range assessment showed that in addition to pepper and tomato, known hosts of X. euvesicatoria, the Iranian strains were able to colonize a number of new hosts such as nightshade and common bean. In contrast, none of them were able to build up their population on cowpea, eggplant, bindweed and zucchini. All X. euvesicatoria strains obtained in this study were sensitive to copper sulphate and streptomycin at concentrations higher than 20 and 50 mg/l, respectively. Phylogenetic analyses of the strains using the sequences of gyrB and hrpB genes confirmed their species as X. euvesicatoria. Given a direct commercial trade of fresh solanaceous vegetables between Iran and Turkey, it is hypothesized that the pathogen entered north‐western Iran from eastern parts of Turkey through infected plant materials. Finally, the role of prevention – based on the use of healthy planting materials and resistant and/or tolerant plant varieties – to contain the potential disease epidemics is discussed.  相似文献   

3.
4.
Alternaria fungi are important plant pathogens. Here, we identified three species new to the Japanese mycoflora: Alternaria celosiae, Alternaria crassa and Alternaria petroselini. We proposed a new name for A. celosiae (E.G. Simmons & Holcomb) Lawrence, Park & Pryor, a later homonym of A. celosiae (Tassi) O. S?vul. To characterize these and a fourth morphological taxon, Alternaria alstroemeriae, which was recently added to Japan's mycoflora, an integrated species concept was tested. We determined the host range of each isolate using inoculation tests and analysed its phylogenetic position using sequences of the internal transcribed spacer rDNA. The pathogenicity of our A. alstroemeriae isolate was strictly limited to Alstroemeria sp. (Alstroemeriaceae), but the species was phylogenetically indistinguishable from other small‐spored Alternaria. Alternaria celosiae on Celosia argentea var. plumosa (Amaranthaceae) was also pathogenic to Amaranthus tricolor, to Alternanthera paronychioides and weakly to Gomphrena globosa (all Amaranthaceae) and formed a clade with the former Nimbya celosiae. Alternaria crassa on Datura stramonium (Solanaceae) was also pathogenic to Brugmansia × candida and Capsicum annuum in Solanaceae, but not to other confamilial plants; phylogenetically it belonged to a clade of large‐spored species with filamentous beaks. Morphological similarity, phylogenetic relationship and experimental host range suggested that Acrassa, Alternaria capsici and Alternaria daturicola were conspecific. Alternaria petroselini on Petroselinum crispum (Apiaceae) was pathogenic to five species in the tribe Apieae as well as representatives of Bupleureae, Coriandreae, Seliaeae and Scandiceae in Apiaceae. Both phylogeny and morphology suggested conspecificity between Apetroselini and Alternaria selini.  相似文献   

5.
6.
Range shifts due to annual variation in temperature are more tractable than range shifts linked to decadal to century long temperature changes due to climate change, providing natural experiments to determine the mechanisms responsible for driving long‐term distributional shifts. In this study we couple physiologically grounded mechanistic models with biogeographic surveys in 2 years with high levels of annual temperature variation to disentangle the drivers of a historical range shift driven by climate change. The distribution of the barnacle Semibalanus balanoides has shifted 350 km poleward in the past half century along the east coast of the United States. Recruits were present throughout the historical range following the 2015 reproductive season, when temperatures were similar to those in the past century, and absent following the 2016 reproductive season when temperatures were warmer than they have been since 1870, the earliest date for temperature records. Our dispersal dependent mechanistic models of reproductive success were highly accurate and predicted patterns of reproduction success documented in field surveys throughout the historical range in 2015 and 2016. Our mechanistic models of reproductive success not only predicted recruitment dynamics near the range edge but also predicted interior range fragmentation in a number of years between 1870 and 2016. All recruits monitored within the historical range following the 2015 colonization died before 2016 suggesting juvenile survival was likely the primary driver of the historical range retraction. However, if 2016 is indicative of future temperatures mechanisms of range limitation will shift and reproductive failure will lead to further range retraction in the future. Mechanistic models are necessary for accurately predicting the effects of climate change on ranges of species.  相似文献   

7.
8.
Species richness patterns are characterized either by overlaying species range maps or by compiling geographically extensive survey data for multiple local communities. Although, these two approaches are clearly related, they need not produce identical richness patterns because species do not occur everywhere in their geographical range. Using North American breeding birds, we present the first continent‐wide comparison of survey and range map data. On average, bird species were detected on 40.5% of the surveys within their range. As a result of this range porosity, the geographical richness patterns differed markedly, with the greatest disparity in arid regions and at higher elevations. Environmental productivity was a stronger predictor of survey richness, while elevational heterogeneity was more important in determining range map richness. In addition, range map richness exhibited greater spatial autocorrelation and lower estimates of spatial turnover in species composition. Our results highlight the fact that range map richness represents species coexistence at a much coarser scale than survey data, and demonstrate that the conclusions drawn from species richness studies may depend on the data type used for analyses.  相似文献   

9.
Understanding species’ responses to fire regimes, particularly rare or threatened species, is important for land managers tasked with managing for biodiversity. Hickman's Allanaspides (Allanaspides hickmani, Anaspidesidae) is a rare, primitive, shrimp‐like crustacean, with high conservation value. It is restricted to a single catchment in the island state of Tasmania, Australia, where it occurs within moorland pools typically containing crayfish (Ombrastacoides spp.) burrows. Although its moorland habitat has a long history of firing, adverse fire regimes are a potential threat to the species. A large part of its range is subject to planned burning to help manage the detrimental effects of high‐intensity wildfires. The resilience of A. hickmani to low–moderate‐intensity fires was investigated over 13 years using a replicated before‐after‐control‐impact design. The fires resulted in an initial reduction in vegetation cover and surface water and an increase in water temperature. There was no effect of fire on A. hickmani captures 4 months after small‐scale, low‐intensity autumn burns. However, 5 months later, following an unintended larger‐scale, medium‐intensity spring burn, there was an 80–90% reduction in A. hickmani captures and their numbers did not recover until 6–9 years post‐fire. It is not known whether the reduced catch was due to a reduction in the number of A. hickmani or their movement from pools into crayfish burrows. These findings together with evidence of a varied fire history, including high‐intensity wildfires, within their range suggests that A. hickmani and its habitat are resilient to a range of fire frequencies and intensities provided that the fire regime does not degrade or lead to a complete loss of peat. Climate change predictions for warmer and drier summers in western Tasmania will increase the risk of peat loss. Planned burning is likely to be important for the protection of A. hickmani habitat from predicted adverse fire regimes.  相似文献   

10.
11.
12.
Successful geographic range expansion by parasites and parasitoids may also require host range expansion. Thus, the evolutionary advantages of host specialization may trade off against the ability to exploit new host species encountered in new geographic regions. Here, we use molecular techniques and confirmed host records to examine biogeography, population divergence, and host flexibility of the parasitoid fly, Ormia ochracea (Bigot). Gravid females of this fly find their cricket hosts acoustically by eavesdropping on male cricket calling songs; these songs vary greatly among the known host species of crickets. Using both nuclear and mitochondrial genetic markers, we (a) describe the geographical distribution and subdivision of genetic variation in O. ochracea from across the continental United States, the Mexican states of Sonora and Oaxaca, and populations introduced to Hawaii; (b) demonstrate that the distribution of genetic variation among fly populations is consistent with a single widespread species with regional host specialization, rather than locally differentiated cryptic species; (c) identify the more‐probable source populations for the flies introduced to the Hawaiian islands; (d) examine genetic variation and substructure within Hawaii; (e) show that among‐population geographic, genetic, and host song distances are all correlated; and (f) discuss specialization and lability in host‐finding behavior in light of the diversity of cricket songs serving as host cues in different geographically separate populations.  相似文献   

13.
Parasite specialization on one or a few host species leads to a reduction in the total number of available host individuals, which may decrease transmission. However, specialists are thought to be able to compensate by increased prevalence in the host population and increased success in each individual host. Here, we use variation in host breadth among a community of avian Haemosporida to investigate consequences of generalist and specialist strategies on prevalence across hosts. We show that specialist parasites are more prevalent than generalist parasites in host populations that are shared between them. Moreover, the total number of infections of generalist and specialist parasites within the study area did not vary significantly with host breadth. This suggests that specialists can infect a similar number of host individuals as generalists, thus compensating for a reduction in host availability by achieving higher prevalence in a single host species. Specialist parasites also tended to infect older hosts, whereas infections by generalists were biased towards younger hosts. We suggest that this reflects different abilities of generalists and specialists to persist in hosts following infection. Higher abundance and increased persistence in hosts suggest that specialists are more effective parasites than generalists, supporting the existence of a trade‐off between host breadth and average host use among these parasites.  相似文献   

14.
Many species are currently changing their distributions and subsequently form sympatric zones with hybridization between formerly allopatric species as one possible consequence. The damselfly Ischnura elegans has recently expanded south into the range of its ecologically and morphologically similar sister species Ischnura graellsii. Molecular work shows ongoing introgression between these species, but the extent to which this species mixing is modulated by ecological niche use is not known. Here, we (1) conduct a detailed population genetic analysis based on molecular markers and (2) model the ecological niche use of both species in allopatric and sympatric regions. Population genetic analyses showed chronic introgression between I. elegans and I. graellsii across a wide part of Spain, and admixture analysis corroborated this, showing that the majority of I. elegans from the sympatric zone could not be assigned to either the I. elegans or I. graellsii species cluster. Niche modeling demonstrated that I. elegans has modified its environmental niche following hybridization and genetic introgression with I. graellsii, making niche space of introgressed I. elegans populations more similar to I. graellsii. Taken together, this corroborates the view that adaptive introgression has moved genes from I. graellsii into I. elegans and that this process is enabling Spanish I. elegans to occupy a novel niche, further facilitating its expansion. Our results add to the growing evidence that hybridization can play an important and creative role in the adaptive evolution of animals.  相似文献   

15.
Hawaiian monk seals (Neomonachus schauinslandi) began recolonizing the main Hawaiian Islands (MHI) roughly 20 yr ago. The species’ abundance is still declining, but the subpopulation in the MHI is increasing by 6.5% per year. This difference may be due to differences in prey availability or habitat quality between the northwest (NWHI) and main Hawaiian Islands, which could be reflected in the movements and behavior of the seals. For example, foraging trip durations may be shorter in areas with higher forage quality. From 2007 to 2014 we deployed GPS phone tags on the islands of Molokai (n = 7), Kauai (n = 6), and Oahu (n = 6) to study movements and dive behavior. Foraging trips typically lasted 0.57 d (IQR: 0.34–0.83) and seals traveled 18 km (IQR: 10.2–30.5) per trip. Seals began benthic dives shortly after entering the water, with most dives to depths of 12–32 m. The median 95% and 50% kernel density isopleths for seals in the MHI were 149.2 km2 and 23.2 km2, respectively. The duration and distance of foraging trips in the MHI were shorter than that observed in other studies from the NWHI, suggesting that foraging habitat is currently better in the MHI.  相似文献   

16.
Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture–recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case for integrating other sources of space-use data.  相似文献   

17.
18.
Upon establishment in a new area, invasive species may undergo a prolonged period of relatively slow population growth and spread, known as a lag period. Lag periods are, apparently, common in invasions, but studies of the factors that facilitate subsequent expansions are lacking in natural systems. We used 10 semi‐independent invasions of the Asian house gecko (Hemidactylus frenatus) to investigate which factors facilitate expansion of this human‐associated species across the urban–woodland interface. We conducted 590 surveys over 12 months on 10 transects running from the urban edge to 2 km into adjacent natural woodland. We recorded H. frenatus out to 2 km from the urban edge on nine of 10 transects, and at high abundance at many woodland sites. Body size, body condition, sex ratio and proportion of gravid females did not vary with distance from the urban edge, suggesting viable, self‐sustaining populations in natural habitats. The extent of expansion was, however, strongly dependent on propagule pressure (the abundance of H. frenatus at the urban edge), and time (time since H. frenatus established in the urban area). The size of the urban area and the structure of the surrounding environment did not impact invasion. Our results show that an invasive species that is deemed ‘human‐associated’ over most of its range is invading natural habitats, and propagule pressure strongly controls the lag time in this system, a finding that echoes results for establishment probability at larger scales.  相似文献   

19.
Genomic DNA samples from larvae of the beet webworm Loxostege sticticalis collected in the south‐western Russia were used to amplify mitochondrial cytochrome oxidase unit I (COI) gene. In a small proportion of samples, the sequenced product showed considerable heterogeneity due to admixture of a minor sequence. A preliminary BLAST analysis of a 100‐bp‐long fragment of this minor sequence showed its maximal similarity to the COI gene region of Cotesia, a genus of braconid larval endoparasitoids of Lepidoptera. An additional primer was designed to specifically amplify ca 300 bp of the COI gene region from Braconidae. As many as seven of 25 samples were positive by PCR. Sequencing of the amplified products in all these samples showed nucleotide sequence identity to the COI region of Cotesia vestalis (Cotesia plutellae) and the presence of two molecular haplotypes among individual parasitoid samples.  相似文献   

20.
Accurate assessment of pest potential distributions is needed to identify their establishment risks that play a key role in pest management in agricultural ecosystems. We used a correlative niche modelling method (Maxent) to predict and map the spatial distributions of two important rice stem borers, Chilo suppressalis and Sesamia cretica, in paddy fields of Iran. In total, 195 presence occurrence records (101 records for C. suppressalis and 94 records for Scretica) were compiled. A set of environmental and topographic variables, with the highest effects on the species distributions and the lowest correlations among themselves, were used. The results showed that mainly the northern parts of Iran were the most suitable areas for C. suppressalis, and north, north‐east and south‐west of Iran as the most suitable areas for Scretica. Both models performed well, with an area under the receiver operating characteristic curve (AUC) of 0.983 and 0.786 for C. suppressalis and Scretica, respectively. The Maxent models showed higher accuracy for predicting the distribution of the specialist pest with the small range sizes compared to the generalist species. Assessing the importance of environmental variables, which were derived from the jackknife test, showed the precipitation as the variable with the highest contribution (66%) in explaining the spatial distribution of C. suppressalis compared to the other variables. The distribution of Scretica was influenced by a set of variables derived from both the precipitation and temperature. The Maxent predictions were useful to map the geographical distributions of the risk for both rice stem borers that is needed to develop effective management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号