共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant range boundaries are generally considered to reflect abiotic conditions; however, a rise in negative or decline in positive species interactions at range margins may contribute to these stable boundaries. While evidence suggests that pollinator mutualisms may decline near range boundaries, little is known about other important plant mutualisms, including microbial root symbionts. Here, we used molecular methods to characterize root‐associated fungal communities in populations of two related temperate tree species from across the species’ range in the eastern United States. We found that ectomycorrhizal fungal richness on plant roots declined with distance from the centre of the host species range. These patterns were not evident in nonmycorrhizal fungal communities on roots nor in fungal communities in bulk soil. Climatic and soil chemical variables could not explain these biogeographic patterns, although these abiotic gradients affected other components of the bulk soil and rhizosphere fungal community. Depauperate ectomycorrhizal fungal communities may represent an underappreciated challenge to marginal tree populations, especially as rapid climate change pushes these populations outside their current climate niche. 相似文献
2.
A. Márcia Barbosa Alba Estrada Ana L. Márquez Andy Purvis C. David L. Orme 《Journal of Biogeography》2012,39(8):1391-1400
Aim Chorological relationships describe the patterns of distributional overlap among species. In addition to revealing biogeographical structure, the resulting clusters of species with similar geographical distributions can serve as natural units in conservation planning. Here, we assess the extent to which temporal, methodological and taxonomical differences in the source of species’ distribution data can affect the relationships that are found. Location Western Europe. Methods We used two data sets – the Atlas of European mammals and polygon range maps from the IUCN Global Mammal Assessment – both as presence–absence data for UTM 50 km × 50 km squares. We performed pairwise comparisons among 156 species for each data set to build matrices of the similarity in distribution across species, using both Jaccard’s and Baroni‐Urbani & Buser’s indices. We then compared these similarity matrices (chorological relationships), as well as the species richness and occurrence patterns from the two data sets. Results As expected, range maps increased both the mean prevalence per species and mean species richness per grid cell in comparison to atlas data, reflecting the general view that these data types respectively over‐ and underestimate species occurrence. However, species richness and occurrence patterns in atlas and range map data were positively associated and, most importantly, the chorological relationships underlying the two data sets were highly similar. Main conclusions Despite many methodological, temporal and taxonomical differences between atlas data and range maps, the chorological relationships encountered between species were similar for both data sets. Chorological analyses can thus be robust to the data source used and provide a solid basis for analytical biogeographical studies, even over broad spatial scales. 相似文献
3.
Kenneth J. Feeley 《Global Change Biology》2012,18(4):1335-1341
Species are predicted to respond to global warming through ‘cold‐ward’ shifts in their geographic distributions due to encroachment into newly suitable habitats and/or dieback in areas that become climatically unsuitable. I conduct one of the first‐ever tests of this hypothesis for tropical plant species. I test for changes in the thermal distributions of 239 South American tropical plant species using dated herbarium records for specimens collected between 1970 and 2009. Supporting a priori predictions, many species (59%) exhibit some evidence of significant cold‐ward range shifts even after correcting for collection biases. Over 1/3 of species (35%) show significant cold‐ward movement in their hot thermal limits (mean rate of change = 0.022 °C yr?1). Most of these species (85%; 30% of all study species) show no corresponding shift in their cold thermal limits. These unbalanced changes in the species’ thermal range limits may indicate species that are experiencing dieback due to their intolerance of rising temperatures coupled with an inability to expand into newly climatically suitable habitats. On the other hand, 25% of species show significant cold‐ward shifts in their cold thermal range limits (mean rate of change = 0.003 °C yr?1), but 80% of these species (20% of all study species) show no corresponding shift in their hot thermal range limits. In these cases, the unbalanced shifts may indicate species that are able to ‘benefit’ under global warming, at least temporally, by both tolerating rising temperatures and expanding into new suitable habitat. An important ancillary result of this study is that the number of species exhibiting significant range shifts was greatly influenced by shifting collector biases. This highlights the need to account for biases when analyzing natural history records or other long‐term records. 相似文献
4.
Luke J. Sutton David L. Anderson Miguel Franco Christopher J. W. McClure Everton B. P. Miranda F. Hernn Vargas Jos de J. Vargas Gonzlez Robert Puschendorf 《Ecology and evolution》2021,11(1):481-497
Understanding species–environment relationships is key to defining the spatial structure of species distributions and develop effective conservation plans. However, for many species, this baseline information does not exist. With reliable presence data, spatial models that predict geographic ranges and identify environmental processes regulating distribution are a cost‐effective and rapid method to achieve this. Yet these spatial models are lacking for many rare and threatened species, particularly in tropical regions. The harpy eagle (Harpia harpyja) is a Neotropical forest raptor of conservation concern with a continental distribution across lowland tropical forests in Central and South America. Currently, the harpy eagle faces threats from habitat loss and persecution and is categorized as Near‐Threatened by the International Union for the Conservation of Nature (IUCN). Within a point process modeling (PPM) framework, we use presence‐only occurrences with climatic and topographical predictors to estimate current and past distributions and define environmental requirements using Ecological Niche Factor Analysis. The current PPM prediction had high calibration accuracy (Continuous Boyce Index = 0.838) and was robust to null expectations (pROC ratio = 1.407). Three predictors contributed 96% to the PPM prediction, with Climatic Moisture Index the most important (72.1%), followed by minimum temperature of the warmest month (15.6%) and Terrain Roughness Index (8.3%). Assessing distribution in environmental space confirmed the same predictors explaining distribution, along with precipitation in the wettest month. Our reclassified binary model estimated a current range size 11% smaller than the current IUCN range polygon. Paleoclimatic projections combined with the current model predicted stable climatic refugia in the central Amazon, Guyana, eastern Colombia, and Panama. We propose a data‐driven geographic range to complement the current IUCN range estimate and that despite its continental distribution, this tropical forest raptor is highly specialized to specific environmental requirements. 相似文献
5.
Jan W. Arntzen 《Molecular ecology》2019,28(23):5145-5154
Classical theory states that hybrid zones will be stable in troughs of low population density where dispersal is hampered. Yet, evidence for moving hybrid zones is mounting. One possible reason that moving zones have been underappreciated is that they may drive themselves into oblivion and with just the superseding species remaining, morphological and genetic signals of past species replacement may be difficult to appreciate. Using genetic data (32 diagnostic single nucleotide polymorphisms) from a clinal hybrid zone of the common toad (Bufo bufo) and the spined toad (Bufo spinosus) in France for comparison, alleles of the latter species were documented in common toads in the south of Great Britain, at frequencies in excess of 10%. Because long distance dispersal across the Channel is unlikely, the conclusion reached was that the continental toad hybrid zone which previously extended into Britain, moved southwards and extirpated B. spinosus. Species distribution models for the mid‐Holocene and the present support that climate has locally changed in favour of B. bufo. The system bears resemblance with the demise of Homo neanderthalensis and the rise of Homo sapiens and provides an example that some paleoanthropologists demanded in support of a hominin “leaky replacement” scenario. The toad example is informative just because surviving pure B. spinosus and an extant slowly moving interspecific hybrid zone are available for comparison. 相似文献
6.
Anthropogenic global climate change is expected to cause severe range contractions among alpine plants. Alpine areas in the Mediterranean region are of special concern because of the high abundance of endemic species with narrow ranges. This study combined species distribution models, population structure analyses and Bayesian skyline plots to trace the past and future distribution and diversity of Linaria glacialis, an endangered narrow endemic species that inhabits summits of Sierra Nevada (Spain). The results showed that: (i) the habitat of this alpine‐Mediterranean species in Sierra Nevada suffered little changes during glacial and interglacial stages of late Quaternary; (ii) climatic oscillations in the last millennium (Medieval Warm Period and Little Ice Age) moderately affected the demographic trends of L. glacialis; (iii) future warming conditions will cause severe range contractions; and (iv) genetic diversity will not diminish at the same pace as the distribution range. As a consequence of the low population structure of this species, genetic impoverishment in the alpine zones of Sierra Nevada should be limited during range contraction. We conclude that maintenance of large effective population sizes via high mutation rates and high levels of gene flow may promote the resilience of alpine plant species when confronted with global warming. 相似文献
7.
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche‐based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1‐WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects. 相似文献
8.
9.
Sean Tomlinson Wolfgang Lewandrowski Carole P. Elliott Ben P. Miller Shane R. Turner 《Ecology and evolution》2020,10(2):763-777
- Short‐range endemic plants often have edaphic specializations that, with their restricted distributions, expose them to increased risk of anthropogenic extinction.
- Here, we present a modeling approach to understand habitat suitability for Ricinocarpos brevis R.J.F.Hend. & Mollemans (Euphorbiaceae), a threatened shrub confined to three isolated populations in the semi‐arid south‐west of Western Australia. The model is a maximum entropy species distribution projection constructed on the basis of physical soil characteristics and geomorphology data at approximately 25 m2 (1 arc‐second) resolution.
- The model predicts the species to occur on shallow, low bulk density soils that are located high in the landscape. The model shows high affinity (72.1% average likelihood of occurrence) for the known populations of R. brevis, as well as identifying likely locations that are not currently known to support the species. There was a strong relationship between the likelihood of R. brevis occurrence and soil moisture content that the model estimated at a depth of 20 cm.
- We advocate that our approach should be standardized using publicly available data to generate testable hypotheses for the distribution and conservation management of short‐range endemic plant species for all of continental Australia.
10.
11.
Joris P. G. M. Cromsigt Graham I. H. Kerley Rafał Kowalczyk 《Diversity & distributions》2012,18(12):1253-1257
Refugee species have been confined to suboptimal habitat through historic anthropogenic factors. If this is unknown, management might actively conserve these species in suboptimal habitat assuming it represents optimal habitat. Similarly, species distribution modelling (SDM) might misguide conservation management of refugee species by only using presence data from suboptimal habitats. We illustrate this by commenting on a recent SDM for European bison that reconstructed the historic distribution of the species. We challenge the interpretation of this model by suggesting an alternative historic biogeography based on the refugee species concept. We argue that, in the case of refugee species, historic reconstructions using SDM cannot be used as a template for conservation management. Rather, experimental re‐introduction programmes should provide us with population performance and life history data from a range of suboptimal to optimal habitats. Such data could be used in mechanistic niche modelling to predict potential distribution of refugee species. 相似文献
12.
Modelling the spatial variation of vital rates: An evaluation of the strengths and weaknesses of correlative species distribution models 总被引:1,自引:0,他引:1 下载免费PDF全文
Susana Suárez‐Seoane Jose Manuel Álvarez‐Martínez Brendan A. Wintle Carlos Palacín Juan C. Alonso 《Diversity & distributions》2017,23(8):841-853
13.
Understanding the processes that influence range expansions during climate warming is paramount for predicting population extirpations and preparing for the arrival of non‐native species. While climate warming occurs over a background of variation due to cyclical processes and irregular events, the temporal structure of the thermal environment is largely ignored when forecasting the dynamics of non‐native species. Ecological theory predicts that high levels of temporal autocorrelation in the environment – relatedness between conditions occurring in close temporal proximity – will favor populations that would otherwise have an average negative growth rate by increasing the duration of favorable environmental periods. Here, we invoke such theory to explain the success of biological invasions and evaluate the hypothesis that sustained periods of high environmental temperature can act synergistically with increases in mean temperature to favor the establishment of non‐native species. We conduct a 60‐day field mesocosm experiment to measure the population dynamics of the non‐native cladoceran zooplankter Daphnia lumholtzi and a native congener Daphnia pulex in ambient temperature environments (control), warmed with recurrent periods of high environmental temperatures (uncorrelated‐warmed), or warmed with sustained periods of high environmental temperatures (autocorrelated‐warmed), such that both warmed treatments exhibited the same mean temperature but exhibited different temporal structures of their thermal environments. Maximum D. lumholtzi densities in the warmed‐autocorrelated treatment were threefold and eightfold higher relative to warmed‐uncorrelated and control treatments, respectively. Yet, D. lumholtzi performed poorly across all experimental treatments relative to D. pulex and were undetectable by the end of the experiment. Using mathematical models, we show that this increase in performance can occur alongside increasing temporal autocorrelation and should occur over a broad range of warming scenarios. These results provide both empirical and theoretical evidence that the temporal structure of the environment can influence the performance of species undergoing range expansions due to climate warming. 相似文献
14.
15.
A new vertebrate for Europe: the discovery of a range‐restricted relict viper in the western Italian Alps 下载免费PDF全文
Samuele Ghielmi Michele Menegon Stuart J. Marsden Lorenzo Laddaga Sylvain Ursenbacher 《Journal of Zoological Systematics and Evolutionary Research》2016,54(3):161-173
We describe Vipera walser, a new viper species from the north‐western Italian Alps. Despite an overall morphological resemblance with Vipera berus, the new species is remarkably distinct genetically from both V. berus and other vipers occurring in western Europe and shows closer affinities to species occurring only in the Caucasus. Morphologically, the new species appear to be more similar to V. berus than to its closest relatives occurring in the Caucasus, but can be readily distinguished in most cases by a combination of meristic features as confirmed by discriminant analysis. The extant population shows a very low genetic variability measured with mitochondrial markers, suggesting that the taxon has suffered a serious population reduction/bottleneck in the past. The species is extremely range‐restricted (less than 500 km2) and occurs only in two disjunct sites within the high rainfall valleys of the Alps north of Biella. This new species should be classified as globally ‘endangered’ due to its small and fragmented range, and an inferred population decline. The main near‐future threats to the species are habitat changes associated with reduced grazing, along with persecution and collecting. 相似文献
16.
Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest 下载免费PDF全文
Lara M. Kueppers Erin Conlisk Cristina Castanha Andrew B. Moyes Matthew J. Germino Perry de Valpine Margaret S. Torn Jeffry B. Mitton 《Global Change Biology》2017,23(6):2383-2395
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season‐average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first‐year recruitment in the forest, but had no net effect on fourth‐year recruitment at any site. Watering during the snow‐free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low‐elevation seeds of both species initially recruited more strongly than high‐elevation seeds across the elevation gradient, although the low‐provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High‐ and low‐elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high‐provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries. 相似文献
17.
H. Eden W. Cottee‐Jones 《Ecological Management & Restoration》2013,14(1):32-40
As remnant vegetation covers <15% of the Australian sheep‐wheat belt, it is important to identify conservation strategies suitable for use in agricultural landscapes. Tree lines are widespread ecological structures in rural areas, and are now the subject of government subsidy schemes in New South Wales. However, the contribution of tree lines to biodiversity conservation is poorly understood. To identify the conservation value of tree lines, the bird communities in 36 tree lines in Cowra Shire, New South Wales, were surveyed 4 times each. The results demonstrated that tree lines were used by a large number of species, six of which were threatened. Different taxa were associated with different physical tree line attributes, with tree line age an important predictor of species occurrence. While mature tree lines tended to support more species, as was reflected in higher Shannon Diversity Index scores, they also harboured relatively more introduced species and nest predators, while young tree lines provided the best habitat for threatened species. However, these tree lines will mature, and as they do so they will provide increasingly suitable habitat for the hyperaggressive native honeyeater, the Noisy Miner (Manorina melanocephala), and introduced species. Therefore, tree lines in agricultural landscapes may only be serving an important role for conservation on short time scales, and the suite of threatened species young tree lines currently support appear likely to decline further in the future. 相似文献
18.
19.
Ana M. M. Sequeira Camille Mellin Damien A. Fordham Mark G. Meekan Corey J. A. Bradshaw 《Global Change Biology》2014,20(3):778-789
The Vulnerable (IUCN) whale shark spans warm and temperate waters around the globe. However, their present‐day and possible future global distribution has never been predicted. Using 30 years (1980–2010) of whale shark observations recorded by tuna purse‐seiners fishing in the Atlantic, Indian and Pacific Oceans, we applied generalized linear mixed‐effects models to test the hypothesis that similar environmental covariates predict whale shark occurrence in all major ocean basins. We derived global predictors from satellite images for chlorophyll a and sea surface temperature, and bathymetric charts for depth, bottom slope and distance to shore. We randomly generated pseudo‐absences within the area covered by the fisheries, and included fishing effort as an offset to account for potential sampling bias. We predicted sea surface temperatures for 2070 using an ensemble of five global circulation models under a no climate‐policy reference scenario, and used these to predict changes in distribution. The full model (excluding standard deviation of sea surface temperature) had the highest relative statistical support (wAICc = 0.99) and explained ca. 60% of the deviance. Habitat suitability was mainly driven by spatial variation in bathymetry and sea surface temperature among oceans, although these effects differed slightly among oceans. Predicted changes in sea surface temperature resulted in a slight shift of suitable habitat towards the poles in both the Atlantic and Indian Oceans (ca. 5°N and 3–8°S, respectively) accompanied by an overall range contraction (2.5–7.4% and 1.1–6.3%, respectively). Predicted changes in the Pacific Ocean were small. Assuming that whale shark environmental requirements and human disturbances (i.e. no stabilization of greenhouse gas emissions) remain similar, we show that warming sea surface temperatures might promote a net retreat from current aggregation areas and an overall redistribution of the species. 相似文献
20.
Daniel S. Chapman Tom Haynes Stephen Beal Franz Essl James M. Bullock 《Global Change Biology》2014,20(1):192-202
Accurate models for species' distributions are needed to forecast the progress and impacts of alien invasive species and assess potential range‐shifting driven by global change. Although this has traditionally been achieved through data‐driven correlative modelling, robustly extrapolating these models into novel climatic conditions is challenging. Recently, a small number of process‐based or mechanistic distribution models have been developed to complement the correlative approaches. However, tests of these models are lacking, and there are very few process‐based models for invasive species. We develop a method for estimating the range of a globally invasive species, common ragweed (Ambrosia artemisiifolia L.), from a temperature‐ and photoperiod‐driven phenology model. The model predicts the region in which ragweed can reach reproductive maturity before frost kills the adult plants in autumn. This aligns well with the poleward and high‐elevation range limits in its native North America and in invaded Europe, clearly showing that phenological constraints determine the cold range margins of the species. Importantly, this is a ‘forward’ prediction made entirely independently of the distribution data. Therefore, it allows a confident and biologically informed forecasting of further invasion and range shifting driven by climate change. For ragweed, such forecasts are extremely important as the species is a serious crop weed and its airborne pollen is a major cause of allergy and asthma in humans. Our results show that phenology can be a key determinant of species' range margins, so integrating phenology into species distribution models offers great potential for the mechanistic modelling of range dynamics. 相似文献