首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population differences in visual environment can lead to divergence in multiple components of animal coloration including signalling traits and colour patterns important for camouflage. Divergence may reflect selection imposed by different receivers (conspecifics, predators), which depends in turn on the location of the colour patch. We tested for local adaptation of two genetically and phenotypically divergent lineages of a rock‐inhabiting lizard, Ctenophorus decresii, by comparing the visual contrast of colour patches to different receivers in native and non‐native environments. The lineages differ most notably in male throat coloration, which is polymorphic in the northern lineage and monomorphic in the southern lineage, but also differ in dorsal and lateral coloration, which is visible to both conspecifics and potential predators. Using models of animal colour vision, we assessed whether lineage‐specific throat, dorsal and lateral coloration enhanced conspicuousness to conspecifics, increased crypsis to birds or both, respectively, when viewed against the predominant backgrounds from each lineage. Throat colours were no more conspicuous against native than non‐native rock but contrasted more strongly with native lichen, which occurs patchily on rocks inhabited by C. decresii. Conversely, neck coloration (lateral) more closely matched native lichen. Furthermore, although dorsal coloration of southern males was consistently more conspicuous to birds than that of northern males, both lineages had similar absolute conspicuousness against their native backgrounds. Combined, our results are consistent with local adaptation of multiple colour traits in relation to multiple receivers, suggesting that geographic variation in background colour has influenced the evolution of lineage‐specific coloration in C. decresii.  相似文献   

2.
Alternative behavioural strategies of colour morphs are expected to associate with endocrine differences and to correspond to differences in physical performance (e.g. movement speed, bite force in lizards); yet the nature of correlated physiological and performance traits in colour polymorphic species varies widely. Colour morphs of male tawny dragon lizards Ctenophorus decresii have previously been found to differ in aggressive and anti-predator behaviours. We tested whether known behavioural differences correspond to differences in circulating baseline and post-capture stress levels of androgen and corticosterone, as well as bite force (an indicator of aggressive performance) and field body temperature. Immediately after capture, the aggressive orange morph had higher circulating androgen than the grey morph or the yellow morph. Furthermore, the orange morph maintained high androgen following acute stress (30 min of capture); whereas androgen increased in the grey and yellow morphs. This may reflect the previously defined behavioural differences among morphs as the aggressive response of the yellow morph is conditional on the colour of the competitor and the grey morph shows consistently low aggression. In contrast, all morphs showed an increase in corticosterone concentration after capture stress and morphs did not differ in levels of corticosterone stress magnitude (CSM). Morphs did not differ in size- and temperature-corrected bite force but did in body temperature at capture. Differences in circulating androgen and body temperature are consistent with morph-specific behavioural strategies in C. decresii but our results indicate a complex relationship between hormones, behaviour, temperature and bite force within and between colour morphs.  相似文献   

3.
Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research.  相似文献   

4.
Intraspecific colour variation is common in nature and can vary from the coexistence of discrete colour variants in polymorphic species to continuous variation. Whether coloration is continuous or discrete is often ambiguous and many species exhibit a combination of the two. The nature of the variation (discrete or continuous) has implications for both the genetic basis of the colour variation and the evolutionary processes generating and maintaining it. Consequently, it is important to qualify the existence of discrete morphs, particularly in relation to the animal's visual system. In this study, we quantified male throat colour variation in Ctenophorus decresii tawny dragon lizard and tested for morphological and ecological correlates of the colour variants. We confirmed that discrete throat colour morphs can be defined based on colour and pattern analyses independent of the human visual system. We also found that the colour variants differed in their conspicuousness from the background, to the lizard's visual system, which has implications for signalling. However, the morphs did not differ in morphology or microhabitat use, which suggests that these characteristics are not involved in the evolutionary maintenance of the polymorphism.  相似文献   

5.
Disruptive sexual selection on colour patterns has been suggested as a major cause of diversification in the cichlid species flock of Lake Victoria. In Neochromis omnicaeruleus, a colour and sex determination polymorphism is associated with a polymorphism in male and female mating preferences. Theoretical work on this incipient species complex found conditions for rapid sympatric speciation by selection on sex determination and sexual selection on male and female colour patterns, under restrictive assumptions. Here we test the biological plausibility of a key assumption of such models, namely, the existence of a male preference against a novel female colour morph before its appearance in the population. We show that most males in a population that lacks the colour polymorphism exhibit a strong mating preference against the novel female colour morph and that reinforcement is not a likely explanation for the origin of such male preferences. Our results show that a specific condition required for the combined action of selection on sex determination and sexual selection to drive sympatric speciation is biologically justified. Finally, we suggest that Lake Victoria cichlids might share an ancestral female recognition scheme, predisposing colour monomorphic populations/species to similar evolutionary pathways leading to divergence of colour morphs in sympatry.  相似文献   

6.
Polymorphic warning signals in aposematic organisms are puzzling because efficient predator learning should select for the most efficient warning colouration. Yet, there are many examples of polymorphic and aposematic organisms in nature. Here, we investigated whether perceived trade-offs between natural and sexual selection, combined with different degrees of morph lineage admixture, can maintain polymorphic yellow and white hindwing colouration in aposematic wood tiger moth males (Arctia plantaginis). Prior research in the system suggests that yellow males have better warning colouration against predators, whereas white male morphs have higher mating success. We performed a mating experiment where females were offered four males: two white and two yellow. One male from each colour came from (purely) monomorphic lines (i.e. including the same paternal colour for multiple generations), whereas one male from each colour were from mixed-morph (or hybrid) lineages. We then assessed whether phenotype (colour), lineage, or an interaction between the two, best affected mating success. Our results showed that although white hindwing coloured males tended to have overall better reproductive success, this was mainly due to the significantly higher mating and hatching success of mixed-morph compared to pure-line individuals. Notably, this suggests the advantage of mixed-morph lineage is limited to white individuals, while on the contrary yellow mixed lineage moths have a disadvantage, i.e. the lowest mating success. The latter also suggests a cost to reproductive success in producing the more efficient against predators yellow warning colouration, even when those individuals recently descend from a white hindwing coloured lineage. Heterozygote, or hybrid advantage, even when confined to only one morph, has been shown to promote polymorphism in some systems, therefore, our results point at the need to further examine genetic architecture and the role of mixed-morph lineages in understanding the maintenance of polymorphisms in nature.  相似文献   

7.
W Zhou  SC Barrett  H Wang  DZ Li 《Molecular ecology》2012,21(18):4631-4645
Both deterministic and stochastic forces determine the representation and frequency of floral morphs in heterostylous plant populations. Phylogeographic analysis of molecular variation can provide information on the role of historical factors, including founder events, in affecting population morph structure. Here, we investigate geographical patterns of floral morph variation in a distylous shrub Luculia pinceana (Rubiaceae) by examining the relations between floral polymorphism and molecular (cpDNA and microsatellite) variation in 25 populations sampled throughout the distribution of the species in southwest China and adjacent countries. In 19 of the 25 populations, the frequency of floral morphs was not significantly different from the expected 1:1 ratio. The remaining populations were either L‐morph biased (2) or monomorphic (4) for this form and were morphologically differentiated from the remaining populations in several floral traits, that is, corolla tube length, sex organ position and stigma‐anther separation. Phylogeographic analysis supports the hypothesis that L. pinceana was initially split into west‐central and eastern lineages in the Early Pleistocene (~1.982 Mya). A centrally located lineage composed of morph‐biased and monomorphic populations appears to have been subsequently derived from the west‐central lineage, perhaps by a founder event after the last glacial maximum. Hypotheses to explain why these populations have not returned to equilibrium morph frequencies are considered.  相似文献   

8.
Colour polymorphic species are model systems for examining the evolutionary processes that generate and maintain discrete phenotypic variation in natural populations. Lizards have repeatedly evolved strikingly similar polymorphic sexual signals in distantly related lineages, providing an opportunity to examine convergence and divergence in colour polymorphism, correlated traits and associated evolutionary processes. Herein, we synthesise the extensive literature on lizard colour polymorphisms in both sexes, including recent advances in understanding of the underlying biochemical, cellular and genetic mechanisms, and correlated behavioural, physiological and life-history traits. Male throat, head or ventral colour morphs generally consist of red/orange, yellow and white/blue morphs, and sometimes mixed morphs with combinations of two colours. Despite these convergent phenotypes, there is marked divergence in correlated behavioural, physiological and life-history traits. We discuss the need for coherence in morph classification, particularly in relation to ‘mixed’ morphs. We highlight future research directions such as the genetic basis of convergent phenotypes and the role of environmental variation in the maintenance of polymorphism. Research in this very active field promises to continue to provide novel insights with broad significance to evolutionary biologists.  相似文献   

9.
Abstract Species of Trillium in the subgenus Phyllantherum are either polymorphic for flower color, or monomorphic for flower color and related to a polymorphic species. This leads to the suggestion that polymorphic species may be the progenitors for monomorphic ones. For this to be true, it must be demonstrated that genetic divergence among flower morphs can occur within polymorphic populations. Genetic structure was assessed in a population of T. sessile that contains a polymorphism for flower color. A survey of 11 enzyme systems using starch gel electrophoresis revealed three polymorphic loci: 6PGD-1, AAT-1 and AAT-2. Analysis of large and small scale spatial structure, stage classes, and flower color classes revealed significant genetic divergence in all instances. Spatial structure in the population is likely a result of genetic neighborhoods which can maintain populational variation via random genetic drift. Genetic divergence of the yellow flower color morph was probably initiated through genetic drift since the morph occurs in low frequencies. The results imply that the initial genetic divergence of species in the subgenus can arise within polymorphic populations.  相似文献   

10.
Many colour polymorphisms are present only in one sex, usually males, but proximate mechanisms controlling the expression of sex-limited colour polymorphisms have received little attention. Here, we test the hypothesis that artificial elevation of testosterone in females of the colour polymorphic tawny dragon lizard, Ctenophorus decresii, can induce them to express the same colour morphs, in similar frequencies, to those found in males. Male C. decresii, express four discrete throat colour morphs (orange, yellow, grey and an orange central patch surrounded by yellow). We used silastic implants to experimentally elevate testosterone levels in mature females to induce colour expression. Testosterone elevation resulted in a substantial increase in the proportion and intensity of orange but not yellow colouration, which was present in a subset of females prior to treatment. Consequently, females exhibited the same set of colour morphs as males, and we confirmed that these morphs are objectively classifiable, by using digital image analyses and spectral reflectance measurements, and occur in similar frequencies as in males. These results indicate that the influence of testosterone differs for different colours, suggesting that their expression may be governed by different proximate hormonal mechanisms. Thus, caution must be exercised when using artificial testosterone manipulation to induce female expression of sex-limited colour polymorphisms. Nevertheless, the ability to express sex-limited colours (in this case orange) to reveal the same, objectively classifiable morphs in similar frequencies to males suggests autosomal rather than sex-linked inheritance, and can facilitate further research on the genetic basis of colour polymorphism, including estimating heritability and selection on colour morphs from pedigree data.  相似文献   

11.
Genetically based variation in coloration occurs in populations of many organisms belonging to various taxa, including birds, mammals, frogs, molluscs, insects and plants. Colour polymorphism has evolved in raptors more often than in any other group of birds, suggesting that predator–prey relationships was a driving evolutionary force. Individuals displaying a new invading colour morph may enjoy an initial foraging advantage because prey have difficulties in learning the colour of a rare morph (apostatic selection), or because morphs provide alternative foraging benefits allowing differently coloured individuals to exploit distinct food niches (disruptive selection). Plumage polymorphism should therefore have evolved in species that prey upon animals having the physiological ability to distinguish between differently coloured predators but also to flee once a predator has been detected. From this assumption, we can predict that closely related polymorphic and monomorphic species prey upon different animals. They may also differ in morphology, because foraging upon different prey may require different foraging modes, and in turn different morphological structures. We tested these two predictions in a comparative study of raptors. As expected, polymorphic and monomorphic species had a different diet, and there was a difference in wing length between polymorphic and monomorphic species within two genera ( Buteo and Accipiter ). Across all raptors for which phylogenetic relationships are known, polymorphic species preyed more often upon mammals than did monomorphic ones. These two types of raptor did not differ in the frequency of birds, insects and reptiles in their diets. We discuss these results in the light of the hypothesis that predator–prey relationships played a role in the evolution of colour polymorphism. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 565–578.  相似文献   

12.
The Gulf of California endemic reef fish, Acanthemblemaria crockeri (Blennioidei, Chaenopsidae), reportedly has two colour morphs, one with melanic lateral spots ('Gulf' morph) and one with orange spots ('Cape' morph). In this study, we recorded colour morph in both males and females and collected mitochondrial DNA sequence data for cytochrome c oxidase I (COI) and tRNA-Pro/D-loop of specimens from throughout the Gulf to explore the genetic basis of the colour morphs. Two highly divergent (HKY + I distance = 11.9% for COI), reciprocally monophyletic lineages were identified, consistent with the presence of two parapatric species. A 30-km gap between the distributions of mitochondrial lineages roughly corresponds to a hypothesized former seaway across the Baja California peninsula north of La Paz, although the estimated divergence time (1.84 million years ago) is more recent than the hypothetical seaway (3–4 million years ago). Surprisingly, the distribution of mitochondrial species is not congruent with the distribution of either male or female colour morphs. Our analysis also revealed significant population differentiation within both species and no shared haplotypes among populations. The northern Gulf species includes four populations (NB, CB, NM and CM) corresponding to northern and central Baja and northern and central mainland sites, while the Cape species includes two populations (SB and SM) corresponding to the Baja and mainland sides of the southern Gulf. The NB/CB division corresponds to a hypothesized Plio–Pleistocene mid-peninsular seaway. The level of genetic divergence documented in this lineage is extraordinary for a marine fish with a pelagic larval stage within a semi-enclosed basin.  相似文献   

13.
Abstract 1. The female‐limited colour polymorphic damselfly Ischnura elegans has proven to be an interesting study organism both as an example of female sexual polymorphism, and in the context of the evolution of colour polymorphism, as a model of speciation processes. 2. Previous research suggests the existence of correlations between colour morph and other phenotypic traits, and the different female morphs in I. elegans may be pursuing alternative phenotypically integrated strategies. However, previous research on morphological differences in southern Swedish individuals of this species was only carried out on laboratory‐raised offspring from a single population, leaving open the question of how widespread such differences are. 3. The present study therefore analysed multi‐generational data from 12 populations, investigating morphological differences between the female morphs in the field, differences in the pattern of phenotypic integration between morphs, and quantified selection on morphological traits. 4. It was found that consistent morphological differences indeed existed between the morphs across populations, confirming that the previously observed differences were not simply a laboratory artefact. It was also found, somewhat surprisingly, that despite the existence of sexual dimorphism in body size and shape, patterns of phenotypic integration differed most between the morphs and not between the sexes. Finally, linear selection gradients showed that female morphology affected fecundity differently between the morphs. 5. We discuss the relevance of these results to the male mimicry hypothesis and to the existence of potential ecological differences between the morphs.  相似文献   

14.
Climate change is recognized as a major threat to biodiversity. Multidisciplinary approaches that combine population genetics and species distribution modelling to assess these threats and recommend conservation actions are critical but rare. Combined, these methods provide independent verification and a more compelling case for developing conservation actions. This study integrates these data streams together with field assessments and spatial analyses to develop future genetic resource management recommendations. The study species was Callistemon teretifolius (Needle Bottlebrush), a shrub species endemic to the Mount Lofty and Flinders Ranges, South Australia, and potentially vulnerable to climate change. Chloroplast microsatellite and Amplified Fragment Length Polymorphism data were combined with species distribution modelling (MaxEnt), spatial analysis and field assessment to evaluate climate change vulnerability. Two major genetic groups were identified (Mount Lofty and Flinders Ranges). Populations in the Flinders Ranges, especially the Southern Flinders Ranges exhibited the highest genetic diversity, indicating a possible genetic refugium. Lower genetic diversity to the south in the Mount Lofty Ranges and north in the Gammon Ranges may be due to post‐glacial expansion into these areas from the Flinders Ranges or loss of alleles. Low levels of contemporary gene flow were identified, which suggests Callistemon teretifolius may have a limited capacity to respond to climate change through migration. Range restrictions were predicted for all future climates, especially in the north. It is likely that C. teretifolius will be adversely affected by climate change, due to limited gene flow, predicted range restriction and loss of suitable habitat. The Southern Flinders Ranges should be a priority for conservation because it contains the highest number of individuals and genetic diversity. We recommend monitoring and adaptive management involving restoration in the Southern Flinders Ranges, potentially incorporating genetic translocations from other areas to capture diversity, to assist C. teretifolius to adapt to climate change.  相似文献   

15.
Studies of heritable colour polymorphisms allow investigators to track the genetic dynamics of natural populations. By comparing polymorphic populations over large geographic areas and across generations, issues about both morph stability and evolutionary dynamics can be addressed, increasing our understanding of the potential mechanisms maintaining genetic polymorphisms. In the present study, we investigated population morph frequencies in a sex‐limited heritable colour polymorphic damselfly (Ischnura elegans, Vander Linden), with three discrete female morphs. We compared the frequencies of these three female morphs in 120 different populations from ten European countries at differing latitudes and longitudes. There were pronounced differences in morph frequencies both across the entire European biogeographic range, as well as at a smaller scale within regions. We also found considerable between‐population variation at the local scale within regions, particularly at the edges of the range of this species. We discuss these findings in the context of recent models of adaptive population divergence along the range of a species. This polymorphism is thus highly dynamic, with stable morph frequencies at the core of the species range but fluctuating morph dynamics at the range limits. We finish with a discussion of how local interactions and climatic factors can be expected to have a strong influence on the biogeographic patterns in this species and other sexually selected polymorphisms. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 775–785.  相似文献   

16.
Conspicuous body colouration in sedentary predators such as orb web spiders seems paradoxical as potential prey can see and avoid the webs. Several studies have demonstrated that rather than deterring prey, the colours act as sensory traps for flower‐seeking insects. In chromatically polymorphic species, the existence of more than one colour morph may lead to differing levels of prey attraction. To explore these issues, we studied a neotropical orb web spider, Verrucosa arenata, which shows colour polymorphism with predominantly white or yellow abdomen colours. We asked whether a particular morph is dominant in the population, and whether a particular morph is associated with enhanced foraging success and body condition. Here we showed that although yellow morphs attracted more prey, white morphs were in better body condition. We showed that model prey such as honeybees are able to discriminate between the morphs. We discuss these findings in relation to the functional significance of bright body colouration and colour polymorphism in spiders.  相似文献   

17.
Polymorphic species, in which multiple variants coexist within a population, are often used as model systems in evolutionary biology. Recent research has been dominated by the hypothesis that polymorphism can be a precursor to speciation. To date, the majority of research regarding polymorphism and speciation has focused on whether polymorphism is maintained within a population or whether morphs within populations may diverge to form separate species (sympatric speciation); however, the geographical context of speciation in polymorphic systems is likely to be both diverse and complex. In this review, we draw attention to the geographic variation in morph composition and frequencies that characterises many, if not most polymorphic species. Recent theoretical and empirical developments suggest that such variation in the number, type and frequency of morphs present among populations can increase the probability of speciation. Thus, the geographical context of a polymorphism requires a greater research focus. Here, we review the prevalence, causes and evolutionary consequences of geographic variation in polymorphism in colour‐polymorphic animal species. The prevalence and nature of geographic variation in polymorphism suggests that polymorphism may be a precursor to and facilitate speciation more commonly than appreciated previously. We argue that a better understanding of the processes generating geographic variation in polymorphism is vital to understanding how polymorphism can promote speciation.  相似文献   

18.
Space use including territoriality and spatial arrangement within a population can reveal important information on the nature, dynamics, and evolutionary maintenance of alternative strategies in color polymorphic species. Despite the prevalence of color polymorphic species as model systems in evolutionary biology, the interaction between space use and genetic structuring of morphs within populations has rarely been examined. Here, we assess the spatial and genetic structure of male throat color morphs within a population of the tawny dragon lizard, Ctenophorus decresii. Male color morphs do not differ in morphology but differ in aggressive and antipredator behaviors as well as androgen levels. Despite these behavioral and endocrine differences, we find that color morphs do not differ in territory size, with their spatial arrangement being essentially random with respect to each other. There were no differences in genetic diversity or relatedness between morphs; however, there was significant, albeit weak, genetic differentiation between morphs, which was unrelated to geographic distance between individuals. Our results indicate potential weak barriers to gene flow between some morphs, potentially due to nonrandom pre‐ or postcopulatory mate choice or postzygotic genetic incompatibilities. However, space use, spatial structure, and nonrandom mating do not appear to be primary mechanisms maintaining color polymorphism in this system, highlighting the complexity and variation in alternative strategies associated with color polymorphism.  相似文献   

19.
Population divergence and speciation are often explained by geographical isolation, but may also be possible under high gene flow due to strong ecology‐related differences in selection pressures. This study combines coalescent analyses of genetic data (11 microsatellite loci and 1 Kbp of mtDNA) and ecological modelling to examine the relative contributions of isolation and ecology to incipient speciation in the scincid lizard Chalcides sexlineatus within the volcanic island of Gran Canaria. Bayesian multispecies coalescent dating of within‐island genetic divergence of northern and southern populations showed correspondence with the timing of volcanic activity in the north of the island 1.5–3.0 Ma ago. Coalescent estimates of demographic changes reveal historical size increases in northern populations, consistent with expansions from a volcanic refuge. Nevertheless, ecological divergence is also supported. First, the two morphs showed non‐equivalence of ecological niches and species distribution modelling associated the northern morph with mesic habitat types and the southern morph with xeric habitat types. It seems likely that the colour morphs are associated with different antipredator strategies in the different habitats. Second, coalescent estimation of gene copy migration (based on microsatellites and mtDNA) suggest high rates from northern to southern morphs demonstrating the strength of ecology‐mediated selection pressures that maintain the divergent southern morph. Together, these findings underline the complexity of the speciation process by providing evidence for the combined effects of ecological divergence and ancient divergence in allopatry.  相似文献   

20.
The neotropical cichlid fish Cichlasoma citrinellum is polymorphic in the structure of its pharyngeal jaw apparatus and external morphology. The pharyngeal jaws are either gracile and bear slender, pointed teeth (papilliform) or robust with strong, rounded teeth (molariform). Molariform morphs have a ‘benthic’, and papilliform morphs a ‘limnetic’ body form. Furthermore, this species is also polychromatic, with yellow and black morphs. The molariform morphology of the pharyngeal jaw apparatus adapts the fish for cracking and feeding on snails. Based on analysis of stomach contents, 94% of the molariform morph ate snails whereas only 19%, of the papilliform morph did so. This result suggests that the morphs occupy different ecological niches. The morphology of the pharyngeal jaw apparatus does not correlate significantly with sex, but it does with body colouration (P<0.005). Cichlasoma citrinellum mate assortatively with their own colour; therefore a mating preference for colour may lead to genetic isolation of trophic morphs. The frequency of the molariform morph differs strikingly among populations of five Nicaraguan lakes and its abundance is correlated with the abundance of snails, the fishes' principal prey item. Among populations the frequency of molariform morphs decreases in the dry season. Morphology possibly changes reversibly within particular individuals between seasons. These results suggest that phenotypic plasticity and polymorphisms may be an adaptive characteristic of cichlid fishes. Patterns of intraspecific morphological variation match patterns of interspecific morphological diversification which suggests that universal developmental mechanisms canalize the possible expressions of morphology. The ability to respond morphologically to environmental shifts, in conjunction with genetically determined trophic polymorphisms and sexual selection via mate choice, could be the basis for speciation through intermediate stages of polymorphism of the impressive adaptive radiation of cichlid fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号