首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synopsis Stomach contents of juvenile coho,Oncorhynchus kisutch, and chinook,O. tshawytscha, salmon collected in purse seines off the coast of Washington and Oregon were examined for variations related to predator size. There was a general trend toward increasing consumption of fish with increasing body size, due mainly to the increase in northern anchovy biomass consumed by the larger salmon. Most of the major prey taxa showed significant differences among the size classes examined for both salmon species. There was a direct relationship between predator and prey size for both coho and chinook, but considerable variation was found in prey length consumed within each size class. Prey width did not provide as good a fit as prey length for either species. In general, coho consumed larger fish prey in relation to their body length than chinook but there were substantial differences by month or year of collection.  相似文献   

2.
Underwater acoustic tag telemetry was used to assess behavioural differences between juvenile wild‐type (i.e. non‐transgenic, NT) and growth hormone (GH) transgenic (T) coho salmon Oncorhynchus kisutch in a contained simulated ocean environment. T O. kisutch were found across days to maintain higher baseline swimming speeds than NT O. kisutch and differences in response to feeding were detected between T and NT genotypes. This is the first study to assess behaviour of GH transgenic salmonids in a marine environment and has relevance for assessing whether behavioural effects of GH overexpression seen in freshwater environments can be extrapolated to oceanic phases of the life cycle.  相似文献   

3.
The biomagnification of methylmercury (MeHg) amongst trophic levels results in high levels of this compound in many freshwater fish species. The role of parasites in MeHg cycling and trophic transfer in freshwater systems is largely unknown. This study examined the potential for metacercariae of Apophallus brevis to accumulate and biomagnify MeHg from their second intermediate host, yellow perch, Perca flavescens. Contrary to our prediction that MeHg levels would be higher in parasites than in the host muscle tissue in which they are embedded, we found that concentrations were similar. The lack of increase in MeHg levels from host to parasite may be due to limited assimilation of host muscle tissue or, in part, to low parasite metabolism. Parasite load did not reduce fish growth and subsequently alter MeHg concentrations. This study suggests that relationships between larval parasites and their hosts do not conform to typical patterns of MeHg biomagnification seen in aquatic systems.  相似文献   

4.
We investigated habitat use by juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) to identify environmental characteristics that may define their optimal marine habitat. We utilized physical and biological data from four cruises in the northern California Current system from Newport, Oregon, to Crescent City, California, in June and August 2000 and 2002. A non-parametric statistical method was used to analyze and select environmental parameters that best defined ocean habitat for each species. Regression trees were generated for all cruises combined to select the most important habitat variables. Chlorophyll a concentration best defined habitat of yearling Chinook salmon, while decapod larvae, salinity, and neuston biovolume defined habitat of yearling coho salmon. Using criteria from the regression tree analysis, GIS maps were produced to show that the habitat of yearling Chinook salmon was widespread over the continental shelf and the habitat of yearling coho salmon was variable and mainly north of Cape Blanco.  相似文献   

5.
Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmon Oncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.  相似文献   

6.
Nematodes that parasitize salmonids are found in both seawater and freshwater. Unlike seawater species such as those in family Anisakidae, freshwater species have not been well studied. In particular, the influences of these nematodes on the body condition of salmonids remain unclear. We studied the effects of Salmonema cf. ephemeridarum on the body condition of masu salmon Oncorhynchus masou. We found a positive relationship between the number of parasites and fish fork length. In contrast, we found a negative relationship between the body condition (condition factor) of fish and the number of parasites. These results suggest that nematode infection could affect host energy reserves for future growth.  相似文献   

7.
We surveyed microsatellite variation from 22 spawning populations of coho salmon (Oncorhynchus kisutch) from the Oregon Coast to help identify populations for conservation planning. All of our samples were temporally replicated, with most samples obtained in 2000 and 2001. We had three goals: (1) to confirm the status of populations identified on the basis of spawning location and life history; (2) to estimate effective population sizes and migration rates in order to determine demographic independence at different spatial scales; and (3) to determine if releases of Washington hatchery coho salmon in the 1980's into Oregon Coast streams resulted in measurable introgression into nearby wild Oregon Coast coho populations. For the last question, our study included a hatchery broodstock sample from 1985, after the Puget Sound introduction, and a 1975 sample taken from the same area prior to the introduction. Our results generally supported previously hypothesized population structure. Most importantly, we found unique lake-rearing groups identified on the basis of a common life-history type were genetically related. Estimates of immigrant fraction using several different methods also generally supported previously identified populations. Estimates of effective population size were highly correlated with estimates of spawning abundance. The 1985 hatchery sample was genetically similar to contemporary Washington samples, and the contemporary Oregon Coast samples were similar to the 1975 Oregon Coast sample, suggesting that introductions of Washington coho salmon did not result in large scale introgression into Oregon populations.  相似文献   

8.
Multiple analytical techniques were used to evaluate the impact of multiple parasite species on the mortality of threatened juvenile coho salmon (Oncorhynchus kisutch) from the West Fork Smith River, Oregon, USA. We also proposed a novel parsimonious mathematical representation of macroparasite distribution, congestion rate, which (i) is easier to use than traditional models, and (ii) is based on Malthusian parameters rather than probability theory. Heavy infections of Myxobolus insidiosus (Myxozoa) and metacercariae of Nanophyetus salmincola and Apophallus sp. occurred in parr (subyearlings) from the lower mainstem of this river collected in 2007 and 2008. Smolts (yearlings) collected in 2007–2010 always harboured fewer Apophallus sp. with host mortality recognised as a function of intensity for this parasite. Mean intensity of Apophallus sp. in lower mainstem parr was 753 per fish in 2007 and 856 per fish in 2008, while parr from the tributaries had a mean of only 37 or 13 parasites per fish, respectively. Mean intensity of this parasite in smolts ranged between 47 and 251 parasites per fish. Over-dispersion (variance to mean ratios) of Apophallus sp. was always lower in smolts compared with all parr combined or lower mainstem parr. Retrospective analysis based on smolt data using both the traditional negative binomial truncation technique and our proposed congestion rate model showed identical results. The estimated threshold level for mortality involving Apophallus sp. was at 400–500 parasites per fish using both analytical methods. Unique to this study, we documented the actual existence of these heavy infections prior to the predicted mortality. Most of the lower mainstem parr (approximately 75%) had infections above this level. Heavy infections of Apophallus sp. metacercariae may be an important contributing factor to the high over-wintering mortality previously reported for these fish that grow and develop in this section of the river. Analyses using the same methods for M.insidiosus and N. salmincola generally pointed to minimal parasite-associated mortality.  相似文献   

9.
SYNOPSIS. The myxosporidan Myxidium minteri was found in 3 recognized hosts, chinook and coho salmon and rainbow trout and 2 new hosts, cutthroat trout and mountain whitefish. Spores in all species examined were found primarily in the gall bladder. Fish infected with this parasite were obtained from both Oregon coastal rivers and Columbia River basin locations. In general the prevalence of infection was higher in the fish in coastal rivers.  相似文献   

10.
The effect of feed cycling (consisting of periods of starvation followed by periods of refeeding to satiation) on compensatory growth was evaluated in growth hormone transgenic and non‐transgenic wild‐type coho salmon Oncorhynchus kisutch. The specific growth rate (GSR) of feed‐restricted non‐transgenic O. kisutch was not significantly different from the GSR of fully‐fed non‐transgenic O. kisutch during two refeeding periods, whereas the GSR of feed‐restricted transgenic O. kisutch was significantly higher in relation to the GSR of fully‐fed transgenic O. kisutch during the second refeeding period, but not during the first, indicating that growth compensation mechanisms are different between non‐transgenic and growth‐hormone (GH)‐transgenic O. kisutch and may depend on life history (i.e. previous starvation). Despite the non‐significant growth rate compensation in non‐transgenic O. kisutch, these fish showed a level of body mass catch‐up growth not displayed by transgenic O. kisutch.  相似文献   

11.
A total of 877 juvenile English sole ( Parophrys vetulus Girard) from the Yaquina Bay estuary and742 juvenileandadultsole from the Pacific Ocean off Oregon were examined forparasites. Fifteen species of parasites were found in juvenile English sole on the estuarine nursery ground. Differences in the prevalence and intensity of parasite infection between size classes of juvenile sole and between sole occupying the upper and lower estuary were determined. An additional 14 parasite species were found in offshore English sole, bringing the total observed in all fish to 29 species. Parasites acquired only in the estuary included the microsporidan Glugea stephani , the acanthocephalan Echinorhynchus lageniformis , and the nematode Philometra americana . Those acquired only in offshore areas included the trematodes Otodistomum veliporum and Zoogonus dextrocirrus , the leech Oceanobdella sp. and three species of copepods. An attempt to use parasite data to indicate the presence of distinct English sole stocks along the Oregon coast was inconclusive.  相似文献   

12.
A combination of a dynamic energy budget (DEB) model, field data on Atlantic salmon Salmo salar and brown trout Salmo trutta and laboratory data on Atlantic salmon was used to assess the underlying assumptions of three different metrics of growth including specific growth rate (G), standardized mass‐specific growth rate (GS) and absolute growth rate in length (GL) in salmonids. Close agreement was found between predictions of the DEB model and the assumptions of linear growth in length and parabolic growth in mass. Field data comparing spring growth rates of age 1+ year and 2+ year Atlantic salmon demonstrated that in all years the larger age 2+ year fish exhibited a significantly lower G, but differences in growth in terms of GS and GL depended on the year examined. For brown trout, larger age 2+ year fish also consistently exhibited slower growth rates in terms of G but grew at similar rates as age 1+ year fish in terms of GS and GL. Laboratory results revealed that during the age 0+ year (autumn) the divergence in growth between future Atlantic salmon smolts and non‐smolts was similar in terms of all three metrics with smolts displaying higher growth than non‐smolts, however, both GS and GL indicated that smolts maintain relatively fast growth into the late autumn where G suggested that both smolts and non‐smolts exhibit a sharp decrease in growth from October to November. During the spring, patterns of growth in length were significantly decoupled from patterns in growth in mass. Smolts maintained relatively fast growth though April in length but not in mass. These results suggest GS can be a useful alternative to G as a size‐independent measure of growth rate in immature salmonids. In addition, during certain growth stanzas, GS may be highly correlated with GL. The decoupling of growth in mass from growth in length over ontogeny, however, may necessitate a combination of metrics to adequately describe variation in growth depending on ontogenetic stage particularly if life histories differ.  相似文献   

13.
The Pacific Northwest state and federal agencies and tribes that operate salmon and steelhead (Oncorhynchus sp.) hatcheries are authorized to develop and implement strategies to reduce the risks the programs pose to wild fish populations. This paper reviews five case studies from the states of Oregon and Washington, USA, where agencies and tribes have implemented or proposed programs that were intended to reduce ecological risks due to hatchery programs. The case studies are for Oregon coho salmon, Select Area terminal fisheries programs for Chinook and coho salmon in the lower Columbia River, Hood Canal chum salmon in Puget Sound Washington, Siletz River steelhead on the Oregon coast, and Okanogan River Chinook salmon in eastern Washington. The five case studies address a diversity of management objectives and species. They demonstrate some of the science and risk reduction strategies used to alleviate the ecological effects of hatcheries, and they document some of the results and outcomes of taking action. Elements of four of the case studies have been in place for nearly 20 years. The available science and the conservation ethic toward hatchery programs evolved significantly over this period, and management decisions and strategies have been influenced by public policy as well as by scientific information. Therefore the case studies also document some of the history, the evolution of ideas, the uncertainty, and the political controversy associated with the management of this risk factor. The paper concludes with six principles to help guide the development of future risk reduction programs.  相似文献   

14.
Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint‐Jean) were placed into artificial streams with combinations of four non‐native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non‐additive effects, as evidenced by lower performance than predicted from weighted summed two‐species competition trials, were detected for S. salar fork length (LF) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non‐additive competition effects.  相似文献   

15.
Hicks BJ  Wipfli MS  Lang DW  Lang ME 《Oecologia》2005,144(4):558-569
After rearing to adulthood at sea, coho salmon (Oncorhynchus kisutch) return to freshwater to spawn once and then die on or near their spawning grounds. We tested the hypothesis that spawning coho salmon return marine N and C to beaver (Castor canadensis) ponds of the Copper River Delta (CRD), Cordova, southcentral Alaska, thereby enhancing productivity of the aquatic food webs that support juvenile coho salmon. We sampled three types of pond treatment: (1) natural enrichment by spawning salmon, (2) artificial enrichment via addition of salmon carcasses and eggs, and (3) ponds with no salmon enrichment. All ponds supported juvenile coho salmon. Seasonal samples of stable isotopes revealed that juvenile coho salmon, threespine sticklebacks (Gasterosteus aculeatus), caddisfly larvae, leeches, and chironomid midge larvae were enriched with marine N and C. The aquatic vascular plants bur reed (Sparganium hyperboreum), pondweed (Potamogeton gramineus), and mare’s tail (Hippuris vulgaris) were enriched with marine N only. Riparian vegetation (Sitka alder Alnus viridis ssp. sinuata and willow Salix spp.) did not show enrichment. Artificial additions of adult carcasses and eggs of coho salmon increased the δ15N and δ13C values of juvenile coho salmon. In this dynamic and hydrologically complex coastal environment, spawning coho salmon contributed marine N and C comprising 10–50% of the dietary needs of juvenile coho salmon through direct consumption of eggs and carcass material. Invertebrates that have assimilated marine N and C yield a further indirect contribution. This perennial subsidy maintains the productivity of the ecosystem of the coho salmon on the CRD.  相似文献   

16.
Ecological interactions between natural and hatchery juvenile salmon during their early marine residence, a time of high mortality, have received little attention. These interactions may negatively influence survival and hamper the ability of natural populations to recover. We examined the spatial distributions and size differences of both marked (hatchery) and unmarked (a high proportion of which are natural) juvenile Chinook salmon in the coastal waters of Oregon and Washington from May to June 1999–2009. We also explored potential trophic interactions and growth differences between unmarked and marked salmon. Overlap in spatial distribution between these groups was high, although catches of unmarked fish were low compared to those of marked hatchery salmon. Peak catches of hatchery fish occurred in May, while a prolonged migration of small unmarked salmon entered our study area toward the end of June. Hatchery salmon were consistently longer than unmarked Chinook salmon especially by June, but unmarked salmon had significantly greater body condition (based on length-weight residuals) for over half of the May sampling efforts. Both unmarked and marked fish ate similar types and amounts of prey for small (station) and large (month, year) scale comparisons, and feeding intensity and growth were not significantly different between the two groups. There were synchronous interannual fluctuations in catch, length, body condition, feeding intensity, and growth between unmarked and hatchery fish, suggesting that both groups were responding similarly to ocean conditions.  相似文献   

17.
Although parasites are expected to affect their host's fitness, quantitative proof for impacts of parasitism on wild populations is hampered by confounding environmental factors, including dietary resource. Herein, we evaluate whether the physiological conditions of European perch (Perca fluviatilis) in three large peri‐alpine lakes (Geneva, Annecy, and Bourget) depend on (a) the nutritional status of the juvenile fish, as revealed by stable isotope and fatty acid compositions, (b) the prevalence of the tapeworm Triaenophorus nodulosus, a parasite transmitted to perch through copepod preys, or (c) interactive effects of both factors. At the scale of lake populations, the deficit in growth and fat storage of juvenile perch during their first summer coincides with a high parasite prevalence and also a low quality of dietary resource. Yet, at the individual level, parasites had no evident effect on the growth of the juvenile perch, while impacts on fat storage appeared only at the highest prevalence of the most infected lake. Fatty acid and stable isotope analyses of fish tissue do not reveal any impact of T. nodulosus on diet, physiology, and feeding behaviour of fish within lakes. Overall, we found a low impact of parasitism on the physiological condition and trophic status of juvenile perch at the end of their first summer. We find instead that juvenile perch growth and fat storage, both factors tied to their winter survival, are under strong nutritional constraints. However, the coinciding nutritional constraints and parasite prevalence of perch juveniles in these three lakes may result from the indirect effect of lake nutrient concentrations, which, as a major control of zooplankton communities, simultaneously regulate both the dietary quality of fish prey and the host–parasite encounter rates.  相似文献   

18.
We are conducting studies on the impacts of parasites on Oregon coastal coho salmon (Oncorhynchus kistuch). An essential first step is documenting the geographic distribution of infections, which may be accomplished by using different methods for parasite detection. Thus, the objectives of the current study were to (1) identify parasite species infecting these stocks of coho salmon and document their prevalence, density, and geographic distribution; (2) assess the pathology of these infections; and (3) for the first time, determine the sensitivity and specificity of histology for detecting parasites compared with examining wet preparations for muscle and gill infections. We examined 576 fry, parr, and smolt coho salmon in total by histology. The muscle and gills of 219 of these fish also were examined by wet preparation. Fish were collected from 10 different locations in 2006-2007. We identified 21 different species of parasites in these fish. Some parasites, such as Nanophyetus salmincola and Myxobolus insidiosus, were common across all fish life stages from most basins. Other parasites, such as Apophallus sp., were more common in underyearling fish than smolts and had a more restricted geographic distribution. Additional parasites commonly observed were as follows: Sanguinicola sp., Trichodina truttae , Epistylis sp., Capriniana piscium, and unidentified metacercariae in gills; Myxobolus sp. in brain; Myxidium salvelini and Chloromyxum majori in kidney; Pseudocapillaria salvelini and adult digenean spp. in the intestine. Only a few parasites, such as the unidentified gill metacercariae, elicted overt pathologic changes. Histology had generally poor sensitivity for detecting parasites; however, it had relatively good specificity. We recommend using both methods for studies or monitoring programs requiring a comprehensive assessment of parasite identification, enumeration, and parasite-related pathology.  相似文献   

19.
Anderson TK  Sukhdeo MV 《PloS one》2011,6(10):e26798

Background

Parasites significantly alter topological metrics describing food web structure, yet few studies have explored the relationship between food web topology and parasite diversity.

Methods/Principal Findings

This study uses quantitative metrics describing network structure to investigate the relationship between the topology of the host food web and parasite diversity. Food webs were constructed for four restored brackish marshes that vary in species diversity, time post restoration and levels of parasitism. Our results show that the topology of the food web in each brackish marsh is highly nested, with clusters of generalists forming a distinct modular structure. The most consistent predictors of parasite diversity within a host were: trophic generality, and eigenvector centrality. These metrics indicate that parasites preferentially colonise host species that are highly connected, and within modules of tightly interacting species in the food web network.

Conclusions/Significance

These results suggest that highly connected free-living species within the food web may represent stable trophic relationships that allow for the persistence of complex parasite life cycles. Our data demonstrate that the structure of host food webs can have a significant effect on the establishment of parasites, and on the potential for evolution of complex parasite life cycles.  相似文献   

20.
Disease‐mediated threats posed by exotic species to native counterparts are not limited to introduced parasites alone, since exotic hosts frequently acquire native parasites with possible consequences for infection patterns in native hosts. Several biological and geographical factors are thought to explain both the richness of parasites in native hosts, and the invasion success of free‐living exotic species. However, the determinants of native parasite acquisition by exotic hosts remain unknown. Here, we investigated native parasite communities of exotic freshwater fish to determine which traits influence acquisition of native parasites by exotic hosts. Model selection suggested that five factors (total body length, time since introduction, phylogenetic relatedness to the native fish fauna, trophic level and native fish species richness) may be linked to native parasite acquisition by exotic fish, but 95% confidence intervals of coefficient estimates indicated these explained little of the variance in parasite richness. Based on R2‐values, weak positive relationships may exist only between the number of parasites acquired and either host size or time since introduction. Whilst our results suggest that factors influencing parasite richness in native host communities may be less important for exotic species, it seems that analyses of general ecological factors currently fail to adequately incorporate the physiological and immunological complexity of whether a given animal species will become a host for a new parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号