首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pre-release risk assessment of parasitoids for classical biological control generally involves non-target testing to define the agent’s host range. To ensure that no suitable host species are falsely rejected in these tests, it has been suggested that the physiological and informational state of parasitoids be manipulated to enhance their “motivation to oviposit”. However, the effects of such factors on host acceptance are not consistent across parasitoid species, making it laborious to identify the conditions necessary to maximise host acceptance. Our objective was to determine whether changes in parasitoid state could alter host acceptance behaviour sufficiently to affect host range expression. In addition, we tested the assumption that a state-dependent shift in motivation to oviposit on the target host will translate to a similar change in responsiveness to lower-ranked host species. Three-day-old and 10-day-old females of the candidate classical biological control agent, Diadromus pulchellus, were offered 12 non-target species of varying relatedness to the target pest, Acrolepiopsis assectella, in a series of no-choice and choice oviposition trials. Younger D. pulchellus females had previously demonstrated greater motivation to oviposit in the target pest and were, therefore, predicted to express a broader host range than older females. Parasitoid age had a minor effect on host range expression that was contrary to expectations. Older females more readily attacked one of the non-target species in no-choice tests and inflicted higher mortality in one of the choice tests. Ultimately however, young and old parasitoids still attacked the same four non-target species and their offspring emerged from the same three. There was an interaction between the effects of parasitoid condition and experimental design on responsiveness to low-ranked hosts: increasing non-target density in choice tests significantly altered attack rates by 10-day-old, but not by 3-day-old, parasitoids. The implications of these findings for host specificity testing depend largely on the specific aims of a host range assessment. Parasitoid state influenced the frequency of non-target attack but did not affect which non-target species were attacked.  相似文献   

2.
We examined the influence of proteinase inhibitors on digestive enzymes and development of oriental beetle,Exomala orientalis Waterhouse, European chafer,Rhizotrogus majalis (Razoumowsky),Phyllophaga white grub,Phyllophaga anxia (LeConte), cranberry root grub,Lichnanthe vulpina (Hentz), Japanese beetle,Popillia japonica Newman, Asiatic garden beetle, Maladera castanea (Arrow) (Coleoptera: Scarabaeidae), and the black cutworm,Agrotis ipsilon (Rottemburg) (Lepidoptera: Noctuidae). We demonstrated that all species within our test group had alkaline midguts that contained proteinase activity that could be inhibited,in vitro with serine proteinase inhibitors. Our data suggests that host range may influence the susceptibility to non-host inhibitors. Chronic ingestion of the serine proteinase inhibitor, Kunitz-soybean trypsin inhibitor (STI), significantly reduced proteolytic activityin vivo in those species with relatively specialized feeding habits (i.e., cranberry root grub, Japanese beetle, Asiatic garden beetle, and black cutworm). Chronic ingestion of STI also resulted in reduced larval growth and delayed pupation for black cutworm, and elevated larval mortality for Japanese beetle. However, chronic ingestion of STI did not influence larval survival for those species with relatively generalized feeding habits (i.e., oriental beetle, European chafer). Based on these results, we propose mechanistically-based criteria for selecting proteinase inhibitors for phytochemical defense against herbivorous insects.  相似文献   

3.
The distribution of three gerbil species in the Negev Desert, Israel differs in relation to sandy habitats. Gerbillus gerbillus occurs in sand only, Gerbillus dasyurus lives in all habitat types except sand, Gerbillus henleyi occurs in sand at high density periods only. We hypothesized that the reason for this distribution pattern is differential ability of species to forage in sand. We tested the ability of gerbils to search for seeds in sand layers of different depths and predicted that a) G. gerbillus will have equal search success at different sand depths, b) G. henleyi (which is twice smaller than G. gerbillus and G. dasyurus) will find seeds in thin layers better than in deep layers, and c) G. dasyurus will successfully find seeds in the thinnest layers only. We predicted also d) that G. gerbillus relies on olfaction for seed location, so its foraging success will be higher in searching for whole seeds than for seed kernels, whereas this will not be the case for G. henleyi and G. dasyurus. We examined the responses of the three species to odor of whole seeds vs seed kernels in Y-maze. In regards to seed depth, the search success of G. gerbillus was significantly higher when the whole seeds rather than kernels were offered in all treatments except the control, but sand depth did not influence the search success. The search success of G. dasyurus and G. henleyi did not depend on the type of seeds offered. The search success of G. dasyurus was lower in experimental (1, 3, 5 and 8 cm sand depth) than in control (1 mm sand depth) treatments, but did not differ among most experimental treatments. The search success of the smallest G. henleyi depended on sand depth for both whole seeds and kernels. Gerbillus gerbillus and G. dasyurus did not lose body masses in any treatment, whereas body mass changes of G. henleyi were influenced by the depth of sand in which gerbils foraged. No species demonstrated differences in response to whole seeds vs kernels in Y-maze tests.  相似文献   

4.
Sebastian Sundberg 《Oikos》2005,108(1):115-124
I made a dispersal experiment with six Sphagnum (peat moss) species, representing a wide range of spore and capsule sizes. Spore deposition was recorded at nine distances up to 3.2 m during two four-day periods with sunny conditions in July and August.
Deposition patterns in all species fitted well to the inverse power law (deposition per unit area proportional to distanceb), with rates of decline b ranging from −1.84 to −2.35 among species (R2>0.99). However, even when these curves are extended to infinity for the four species with b<−2, they fail to explain all spores being dispersed (e.g. only 11% in S. squarrosum ). Difference in rates of decline b between the periods, despite similar horizontal wind speeds and directions, indicates the importance of thermal updrafts. Spore capsule diameter negatively correlated with the proportions of spores remaining in dehisced capsules (range 5–16%), being deposited within the colony (range 2–14%), and being deposited between the colony edge and the outer sampled perimeter (range 7–22%), probably because a larger capsule shoots the spores higher into the air, in effect meaning an increased initial release height. Spore diameter positively affected deposition outside the colony edge. The deposition curves together with observed long-distance colonisations, omnipresence in mires of many Sphagnum species and genetic evidence, suggest that Sphagnum spores regularly travel far.
Spatial extension of the empirical deposition curves at a regional scale indicate that with increasing isolation of target sites, the higher the proportion of spores would originate from sources farther away than the nearest sources. Given spatial patterns in the source populations, this would result in higher genetic (and species) diversity per coloniser with increasing isolation, thus counteracting differentiation.  相似文献   

5.
A central goal in ecology is to develop theories that explain the diversity and distribution of species. The evolutionary history of species and their functional traits may provide mechanistic links between community assembly and the environment. Such links may be hierarchically structured such that the strength of environmental filtering decreases in a step‐wise manner from regional conditions through landscape heterogeneity to local habitat conditions. We sampled the wild bee species assemblages in power‐line strips transecting forests in south‐eastern Norway. We used altitude, landscape diversity surrounding sites and plant species composition, together with total plant cover as proxies for regional, landscape and local environmental filters, respectively. The species richness and abundance of wild bees decreased with altitude. The reduction in species richness and abundance was accompanied by a phylogenetic clustering of wild bee individuals. Furthermore, regional filters followed by local filters best explained the structure of the functional species composition. Sites at high altitudes and sites with Ericaceae‐dominated plant communities tended to have larger bees and a higher proportion of social and spring‐emerging bees. When Bombus species were excluded from the analysis, the proportion of pollen specialists increased with the dominance of Ericaceae. Furthermore, we also found that the taxonomic, phylogenetic and functional compositional turnover between sites was higher in the northern region than in the southern part of the study region. Altogether, these results suggest that regional filters drive the species richness and abundance in trait‐groups whereas local filters have more descrete sorting effects. We conclude that the model of multi‐level environmental filters provides a good conceptual model for community ecology. We suggest that future studies should focus on the relationship between the biogeographical history of species and their current distribution, and on the assumption that closely related species do indeed compete more intensely than distantly related species.  相似文献   

6.
Aim Broad‐scale spatial patterns of species richness are very strongly correlated with climatic variables. If there is a causal link, i.e. if climate directly or indirectly determines patterns of richness, then when the climatic variables change, richness should change in the manner that spatial correlations between richness and climate would predict. The present study tests this prediction using seasonal changes in climatic variables and bird richness. Location We used a grid of equal area quadrats (37 000 km2) covering North and Central America as far south as Nicaragua. Methods Summer and winter bird distribution data were drawn from monographs and field guides. Climatic data came from published sources. We also used remotely sensed NDVI (normalized difference vegetation index — a measure of greenness). Results Bird species richness changes temporally (between summer and winter) in a manner that is close to, but statistically distinguishable from, the change one would predict from models relating the spatial variation in richness at a single time to climatic variables. If one further takes into account the seasonal changes in NDVI and within‐season variability of temperature and precipitation, then winter and summer richness follow congruent, statistically indistinguishable patterns. Main conclusions Our results are consistent with the hypothesis that climatic variables (temperature and precipitation) and vegetation cover directly or indirectly influence patterns of bird species richness.  相似文献   

7.
Genome size varies considerably among organisms, largely as the result of differences in the content of non‐coding and/or repetitive DNA, such as introns, pseudogenes, or transposable elements, as well as whole‐genome duplications. Genome size is known to correlate with metabolic rates. Because polyphagy also affects the metabolism, a correlation between diet specialization and genome size can be expected. To test this hypothesis, a study was undertaken with five closely related species of stem borers which are easy to rear under artificial conditions, namely Busseola fusca (Fuller), Busseola segeta (Bowden), Busseola nairobica Le Ru, Sesamia calamistis Hampson, and Sesamia nonagrioides Lefebvre (all Lepidoptera: Noctuidae). However, as the number of species was too low for correlating diet with genome size in Lepidoptera in general, literature data from 16 Lepidoptera species were used in addition. The results pointed to a relationship between genome size and the insect's host plant range in Lepidoptera, but below the family level only, with larger genomes in polyphagous compared to specialist species. In addition, the genome size appeared to be influenced not only by host plant range but also by environmental/climatic conditions. Studies to test this hypothesis should be done strictly below the family level.  相似文献   

8.
9.
When presented against a highly lit black background, dimly illuminated white paper strips appear white even when they are equiluminant with the background. Such an example of simultaneous lightness constancy cannot be accounted for by receptor gain control because of the equiluminance. Moreover, this demonstration shows that lightness cannot be reduced to 'relative brightness' as is widely believed.  相似文献   

10.
The SRY gene, which is located on the Y chromosome and directs male development, may promote aggression and other traditionally male behavioural traits, resulting in the fight-or-flight reaction to stress.  相似文献   

11.
Parasitism of mammals is ubiquitous, but the processes driving parasite aggregation on hosts are poorly understood, as each system seems to show unique correlations between parasitism and host traits such as sex, age, size and body mass. Genetic diversity is also posited to influence susceptibility to parasitism, and provides a quantifiable measure of an intrinsic unchanging host property, but this link has not been well established. A lack of consistency in host traits predicting parasite heterogeneity may derive from the contribution of environmental factors to parasite aggregation. To evaluate this question, a large dataset was leveraged to explore the relationship between unchanging, intrinsic host traits (heterozygosity and sex), variable host traits (age, length and body mass), and extrinsic factors (sampling date/year and population) and flea presence/absence, abundance and intensity on two species of social burrowing mammal, the black-tailed prairie dog (Cynomys ludovicianus) and the Gunnison’s prairie dog (Cynomys gunnisoni). Prairie dogs experience frequent parasitism by fleas, but the distribution of fleas among individuals is highly skewed. In these systems, intrinsic host traits were nuanced in how they predicted flea aggregation on individual prairie dogs, with sex unimportant to parasitism rates and heterozygosity increasing the probability of infection and influencing the number of fleas in divergent ways. Variable host traits interacted with each other and with environmental or geographic stochasticity to influence flea aggregation. Length and age tended to increase parasitism, whereas the effects of body mass and condition were mediated by date and other host traits to produce both positive and negative effects on parasitism. This finding suggests that the factors affecting ectoparasite infection on individuals are complex, even within species. Importantly, there was no correlation between the number of fleas on an individual in one year and the number of fleas on the same individual the next year, supporting the idea that flea aggregation is not driven by unchanging, intrinsic characteristics of the host. Rather, these findings indicate that host traits influence parasitism in nuanced ways, including interactions with environmental characteristics and stochastic factors.  相似文献   

12.
The role of local-scale processes in determining large-scale patterns of abundance is a key issue in ecology. To test whether habitat use determines local and large-scale patterns of abundance of obligate coral-dwelling fishes (genus Gobiodon), the author compared habitat availability with the abundance of four species, G. axillaris, G. brochus, G. histrio, and G. quinquestrigatus, among four locations, from the southern Great Barrier Reef to northern Papua New Guinea. Habitat availability, measured at tens of meters, explained 47-65% of the variation in abundance of these species among geographic locations spanning over 2,000 km. Therefore, local-scale patterns of habitat use appear to determine much larger-scale patterns of abundance in these habitat-specialist fish. The abundances of all species, except G. brochus, were also closely associated with particular exposure regimes, independently of the abundance of corals. Broad-scale habitat selection for reef types within locations can most easily explain this pattern. The abundances of all species, except G. brochus, also varied among geographic locations, independently of coral abundances. Therefore, the abundances of these species are influenced by either geographic variation in local-scale processes that was not measured, or additional processes acting at very large spatial scales.  相似文献   

13.
14.
Dactylis glomerata was grown hydroponically in a controlled environment at ambient (360 μl l−1) or elevated (680 μl l−1) CO2 and four concentrations of nitrogen (0.15, 0.6, 1.5 and 6.0 m M NO3), to test the hypothesis that reduction of photosynthetic capacity at elevated [CO2] is dependent on N availability and mediated by a build-up of non-structural carbohydrates. Photosynthetic capacity of the youngest fully expanded leaf (leaf 5, 2 days after full expansion) was reduced in CO2-enriched plants at low, but not high N supply and so the stimulation of net photosynthesis by CO2 enhancement was less at low than at high N supply. CO2 enrichment resulted in a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content on a leaf area basis at 0.6 and 1.5 m M NO3, but not at 0.15 and 6.0 m M NO3, and had no effect on the total N content of the leaf on an area basis. However, decreases in Rubisco content could be primarily accounted for by a decrease in total N content of leaves, independent of [CO2]. A doubling of the Rubisco content by increasing the N supply beyond 0.6 m M had only a marginal effect on the maximum carboxylation velocity in vivo, suggesting that the fraction of inactive Rubisco increased with increasing N supply. Although CO2-enriched plants accumulated more non-structural carbohydrates in the leaf, the reduction of photosynthetic capacity at low N supply was not mediated simply by a build-up of carbohydrates. In D . glomerata , the photosynthetic capacity was mainly determined by the total N content of the leaf.  相似文献   

15.
The range sizes of sediment‐dwelling deep‐sea species are largely unknown. Such knowledge is important because a deep sea composed in large part of species with 100‐km‐scale ranges would be very different from one composed predominantly of species with 1000‐km‐scale ranges. For example, the total species richness would be much greater in the first case than in the second. As a step towards the determination of the distribution of species’ range sizes in the deep sea, we asked whether harpacticoid copepods (Crustacea) on the continental rise in the northeastern Pacific had 1000‐km‐scale range sizes. We chose harpacticoids because they occur widely in deep‐sea sediments and thus are a typical deep‐sea taxon. In addition, they have no pelagic stage in their life history, so they allow a conservative test of hypotheses about species’ range sizes. We used morphology and gene‐sequence data to assign individuals to species. At least 13.3% of the species we studied had 1000‐km‐scale ranges, raising the question of how these species maintain genetic continuity.  相似文献   

16.
  • Pollinator specialisation through exploitation barriers (such as long floral tubes) does not necessarily mean a lack of pollination when the favoured pollinator is rare or absent. Theory predicts that suboptimal visitors will contribute to plant reproduction in the absence of the most effective pollinator. Here I address these questions with Chasmanthe floribunda a long‐tubed plant species in the Cape Floristic Region, which is reliant on one species of pollinator, the long‐billed Malachite Sunbird. In contrast to short‐billed sunbirds, the Malachite Sunbird occurs in lower abundance or is absent in transformed landscapes. Short‐billed sunbirds rob and thieve nectar from long‐tubed flowers, but their potential contribution towards pollination is unknown.
  • Experiments assessing seed set after single flower visits were performed to determine whether thieving short‐billed sunbirds can act as substitute pollinators. To determine whether short‐billed sunbirds reduce pollen limitation in transformed areas, pollen supplementation was done by hand and compared to natural fruit set.
  • Short billed sunbirds are unable to act as substitute pollinators, and seed set is significantly lower in the flowers that they visited, compared to flowers visited by long‐billed sunbirds. This is substantiated on a landscape scale, where fruit production in Chasmanthe floribunda could artificially be increased by 35% in transformed landscapes, but not so in natural areas.
  • These findings have important consequences for the management and conservation of long‐tubed bird‐pollinated plant species that exist in recently transformed landscapes. The potential vulnerability of specialised plant species in transformed landscapes is highlighted.
  相似文献   

17.
Abstract. 1. A sequence of population estimates for two now-extinct populations of Euphydryas editha bayensis is presented. After removing biased sampling days, estimates of demographic parameters from the long-term data were used to test five hypotheses built from studies of shorter duration. Such tests of short-term conclusions are rare.
2. The long-term demographic parameters include sex ratio, mortality, dispersal, mean flight date, and duration of flight season. The two populations differed with respect to sex ratio and mean flight date, and sexes differed with respect to mortality and dispersal.
3. Three of the five hypotheses were supported directly or indirectly by patterns in the parameters. These hypotheses predict that dynamics are asynchronous over the long term, that larval mortality, not adult abundance and mortality, is the primary determinant of changes in population size, and that topography mediates larval mortality.
4. Two hypotheses were not supported or supported only in part. Flight phenology differed between the study populations as predicted, but flight order was opposite that expected from the topographic composition of each habitat. Variability in sex ratio and the occurrence of female-biased ratios in the habitat of one of the populations also suggest that previous observations of sex ratio are not generalisable.
5. Populations were extremely volatile over the study period. Removal of biased sampling days did not change basic trends or fluctuations in the data. This volatility suggests that E. editha populations residing in similar habitats may risk immediate extinction.  相似文献   

18.
Plant-related performance may be one of the most important factors in the selection of host plants by insect herbivores. We investigated the importance of plant-related performance in host selection by the willow leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae), on four willow species: Salix chaenomeloides Kimura, Salix eriocarpa Fr. et Sav., Salix   integra Thunb., and Salix serissaefolia Kimura (Salicaceae). Bagging experiments in the field revealed that the performance of P. versicolora adults and larvae differed significantly among willow species under enemy-free conditions and at constant densities. Egg clutch and larval abundance were positively related to adult abundance. Plagiodera versicolora adults did not discriminate strongly among willow species for feeding and oviposition. Larval performance did not differ among willow species in the presence of natural enemies, suggesting that interspecific differences in host quality were overridden by mortality from natural enemies. Adult and egg clutch abundance of P. versicolora changed seasonally despite the temporal stability of adult and larval performance under enemy-free field conditions. Thus, plant-related performance of P. versicolora adults and larvae may contribute little to population growth and temporal dynamics of host use in P. versicolora . Potential factors that reduce discrimination of P. versicolora among host willow species are discussed.  相似文献   

19.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection.  相似文献   

20.
Mary Jane West-Eberhard has suggested that plasticity may be of primary importance in promoting evolutionary innovation and diversification. Here, we explore the possibility that the diversification of phytophagous insects may have occurred through such a process, using examples from nymphalid butterflies. We discuss the ways in which host plant range is connected to plasticity and present our interpretation of how West-Eberhard’s scenario may result in speciation driven by plasticity in host utilization. We then review some of the evidence that diversity of plant utilization has driven the diversification of phytophagous insects and finally discuss whether this suggests a role for plasticity-driven speciation. We find a close conceptual connection between our theory that the diversification of phytophagous insects has been driven by oscillations in host range, and our personal interpretation of the most efficient way in which West-Eberhard’s theory could account for plasticity-driven speciation. A major unresolved issue is the extent to which a wide host plant range is due to adaptive plasticity with dedicated modules of genetic machinery for utilizing different plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号