共查询到20条相似文献,搜索用时 11 毫秒
1.
Yuzhen Wei Yin Lan Yucheng Zhong Kunwu Yu Wenbin Xu Ruirui Zhu Haitao Sun Yan Ding Yue Wang Qiutang Zeng 《Journal of cellular and molecular medicine》2020,24(1):371-384
Excessive immune‐mediated inflammatory reaction plays a deleterious role in ventricular remodelling after myocardial infarction (MI). Interleukin (IL)‐38 is a newly characterized cytokine of the IL‐1 family and has been reported to exert a protective effect in some autoimmune diseases. However, its role in cardiac remodelling post‐MI remains unknown. In this study, we found that the expression of IL‐38 was increased in infarcted heart after MI induced in C57BL/6 mice by permanent ligation of the left anterior descending artery. In addition, our data showed that ventricular remodelling after MI was significantly ameliorated after recombinant IL‐38 injection in mice. This amelioration was demonstrated by better cardiac function, restricted inflammatory response, attenuated myocardial injury and decreased myocardial fibrosis. Our results in vitro revealed that IL‐38 affects the phenotype of dendritic cells (DCs) and IL‐38 plus troponin I (TNI)‐treated tolerogenic DCs dampened adaptive immune response when co‐cultured with CD4+T cells. In conclusion, IL‐38 plays a protective effect in ventricular remodelling post‐MI, one possibility by influencing DCs to attenuate inflammatory response. Therefore, targeting IL‐38 may hold a new therapeutic potential in treating MI. 相似文献
2.
3.
4.
Lycium barbarum polysaccharides restore adverse structural remodelling and cardiac contractile dysfunction induced by overexpression of microRNA‐1 下载免费PDF全文
Rong Zhang Yi Xu Huifang Niu Ting Tao Tao Ban Linyao Zheng Jing Ai 《Journal of cellular and molecular medicine》2018,22(10):4830-4839
MicroRNA‐1 (miR‐1) stands out as the most prominent microRNA (miRNA) in regulating cardiac function and has been perceived as a new potential therapeutic target. Lycium barbarum polysaccharides (LBPs) are major active constituents of the traditional Chinese medicine based on L. barbarum. The purpose of this study was to exploit the cardioprotective effect and molecular mechanism of LBPs underlying heart failure. We found that LBPs significantly reduced the expression of myocardial miR‐1. LBPs improved the abnormal ECG and indexes of cardiac functions in P‐V loop detection in transgenic (Tg) mice with miR‐1 overexpression. LBPs recovered morphological changes in sarcomeric assembly, intercalated disc and gap junction. LBPs reversed the reductions of CaM and cMLCK, the proteins targeted by miR‐1. Similar trends were also obtained in their downstream effectors including the phosphorylation of MLC2v and both total level and phosphorylation of CaMKII and cMyBP‐C. Collectively, LBPs restored adverse structural remodelling and improved cardiac contractile dysfunction induced by overexpression of miR‐1. One of the plausible mechanisms was that LBPs down‐regulated miR‐1 expression and consequently reversed miR‐1‐induced repression of target proteins relevant to myocardial contractibility. LBPs could serve as a new, at least a very useful adjunctive, candidate for prevention and therapy of heart failure. 相似文献
5.
TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction 下载免费PDF全文
Ting Gao Shao‐Ping Zhang Jian‐Fei Wang Li Liu Yin Wang Zhi‐Yong Cao Qi‐Kuan Hu Wen‐Jun Yuan Li Lin 《Journal of cellular and molecular medicine》2018,22(1):395-408
Toll‐like receptors (TLRs) are essential immunoreceptors involved in host defence against invading microbes. Recent studies indicate that certain TLRs activate immunological autophagy to eliminate microbes. It remains unknown whether TLRs regulate autophagy to play a role in the heart. This study examined this question. The activation of TLR3 in cultured cardiomyocytes was observed to increase protein levels of autophagic components, including LC3‐II, a specific marker for autophagy induction, and p62/SQSTM1, an autophagy receptor normally degraded in the final step of autophagy. The results of transfection with a tandem mRFP‐GFP‐LC3 adenovirus and use of an autophagic flux inhibitor chloroquine both suggested that TLR3 in cardiomyocytes promotes autophagy induction without affecting autophagic flux. Gene‐knockdown experiments showed that the TRIF‐dependent pathway mediated the autophagic effect of TLR3. In the mouse model of chronic myocardial infarction, persistent autophagy was observed, concomitant with up‐regulated TLR3 expression and increased TLR3‐Trif signalling. Germline knockout (KO) of TLR3 inhibited autophagy, reduced infarct size, attenuated heart failure and improved survival. These protective effects were abolished by in vivo administration of an autophagy inducer rapamycin. Similar to the results obtained in cultured cardiomyocytes, TLR3‐KO did not prevent autophagic flux in mouse heart. Additionally, this study failed to detect the involvement of inflammation in TLR3‐KO‐derived protection, as wild‐type and TLR3‐KO hearts were comparable in inflammatory activity. It is concluded that up‐regulated TLR3 expression and signalling contributes to persistent autophagy following MI, which promotes heart failure and lethality. 相似文献
6.
7.
Chunling Xu Yangpo Cao Ruxia Liu Lei Liu Weilin Zhang Xuan Fang Shi Jia Jingjing Ye Yingying Liu Lin Weng Xue Qiao Bo Li Ming Zheng 《Journal of cellular and molecular medicine》2022,26(4):1315
Autophagy including mitophagy serves as an important regulatory mechanism in the heart to maintain the cellular homeostasis and to protect against heart damages caused by myocardial infarction (MI). The current study aims to dissect roles of general autophagy and specific mitophagy in regulating cardiac function after MI. By using Beclin1+/−, Fundc1 knockout (KO) and Fundc1 transgenic (TG) mouse models, combined with starvation and MI models, we found that Fundc1 KO caused more severe mitochondrial and cardiac dysfunction damages than Beclin1+/− after MI. Interestingly, Beclin1+/− caused notable decrease of total autophagy without detectable change to mitophagy, and Fundc1 KO markedly suppressed mitophagy but did not change the total autophagy activity. In contrast, starvation increased total autophagy without changing mitophagy while Fundc1 TG elevated total autophagy and mitophagy in mouse hearts. As a result, Fundc1 TG provided much stronger protective effects than starvation after MI. Moreover, Beclin1+/−/Fundc1 TG showed increased total autophagy and mitophagy to a level comparable to Fundc1 TG per se, and completely reversed Beclin1+/−‐caused aggravation of mitochondrial and cardiac injury after MI. Our results reveal that mitophagy but not general autophagy contributes predominantly to the cardiac protective effect through regulating mitochondrial function. 相似文献
8.
Lifang Yang Jipeng Ma Ying Tan Qijun Zheng Maolong Dong Wei Guo Lize Xiong Jian Yang Jun Ren 《Journal of cellular and molecular medicine》2019,23(7):4640-4652
Hypertension contributes to the high cardiac morbidity and mortality. Although oxidative stress plays an essential role in hypertensive heart diseases, the mechanism remains elusive. Transgenic mice with cardiac overexpression of metallothionein, a heavy metal‐binding scavenger, were challenged with NG‐nitro‐L‐arginine methyl ester (L‐NAME) for 14 days prior to measurement of myocardial contractile and intracellular Ca2+ anomalies as well as cell signalling mechanisms using Western blot and immunofluorescence analysis. L‐NAME challenge elicited hypertension, macrophage infiltration, oxidative stress, inflammation and cardiac dysfunction manifested as increased proinflammatory macrophage marker F4/80, interleukin‐1β (IL‐1β), intracellular production, LV end systolic and diastolic diameters as well as depressed fractional shortening. L‐NAME treatment reduced mitochondrial membrane potential (MMP), impaired cardiomyocyte contractile and intracellular Ca2+ properties as evidenced by suppressed peak shortening, maximal velocity of shortening/relengthening, rise in intracellular Ca2+, along with elevated baseline and peak intracellular Ca2+. These unfavourable mechanical changes and decreased MMP (except blood pressure and macrophage infiltration) were alleviated by overexpression of metallothionein. Furthermore, the apoptosis markers including BAD, Bax, Caspase 9, Caspase 12 and cleaved Caspase 3 were up‐regulated while the anti‐apoptotic marker Bcl‐2 was decreased by L‐NAME treatment. Metallothionein transgene reversed L‐NAME‐induced changes in Bax, Bcl‐2, BAD phosphorylation, Caspase 9, Caspase 12 and cleaved Caspase 3. Our results suggest that metallothionein protects against L‐NAME‐induced myocardial contractile anomalies in part through inhibition of apoptosis. 相似文献
9.
Zhen Jiang Zhengkai Lu Shan Kou Teng Feng Yuanxin Wei Zibei Gao Defang Deng Jufeng Meng Chao-Po Lin Bin Zhou Hui Zhang 《Cell research》2021,31(4):485-487
Dear Editor,
Coronary artery disease is a leading cause of mortality and morbidity worldwide.Blockade of effective blood flow to heart muscles results in cardi... 相似文献
10.
S. A. J. Chamuleau K. R. Vrijsen D. G. Rokosh X. L. Tang J. J. Piek R. Bolli 《Netherlands heart journal》2009,17(5):199-207
Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells. Recent clinical studies showed ostensibly conflicting results of intracoronary infusion of autologous bone marrow derived stem cells in patients with acute or chronic myocardial infarction. Anyway, these results have stimulated additional clinical and pre-clinical studies to further enhance the beneficial effects of stem cell therapy. Recently, the existence of cardiac stem cells that reside in the heart itself was demonstrated. Their discovery has sparked intense hope for myocardial regeneration with cells that are obtained from the heart itself and are thereby inherently programmed to reconstitute cardiac tissue. These cells can be detected by several surface markers (e.g. c-kit, Sca-1, MDR1, Isl-1). Both in vitro and in vivo differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells has been demonstrated, and animal studies showed promising results on improvement of left ventricular function. This review will discuss current views regarding the feasibility of cardiac repair, and focus on the potential role of the resident cardiac stem and progenitor cells. (Neth Heart J 2009;17:199–207.) 相似文献
11.
Up‐regulated TLR4 in cardiomyocytes exacerbates heart failure after long‐term myocardial infarction 下载免费PDF全文
Li Liu Yin Wang Zhi‐Yong Cao Meng‐Meng Wang Xue‐Mei Liu Ting Gao Qi‐Kuan Hu Wen‐Jun Yuan Li Lin 《Journal of cellular and molecular medicine》2015,19(12):2728-2740
It remains unclear whether and how cardiomyocytes contribute to the inflammation in chronic heart failure (CHF). We recently reviewed the capacity of cardiomyocytes to initiate inflammation, by means of expressing certain immune receptors such as toll‐like receptors (TLRs) that respond to pathogen‐ and damage‐associated molecular patterns (PAMP and DAMP). Previous studies observed TLR4‐mediated inflammation within days of myocardial infarction (MI). This study examined TLR4 expression and function in cardiomyocytes of failing hearts after 4 weeks of MI in rats. The increases of TLR4 mRNA and proteins, as well as inflammatory cytokine production, were observed in both the infarct and remote myocardium. Enhanced immunostaining for TLR4 was observed in cardiomyocytes but not infiltrating leucocytes. The injection of lentivirus shRNA against TLR4 into the infarcted heart decreased inflammatory cytokine production and improved heart function in vivo. Accordingly, in cardiomyocytes isolated from CHF hearts, increases of TLR4 mRNA and proteins were detected. More robust binding of TLR4 with lipopolysaccharide (LPS), a PAMP ligand for TLR4, and heat shock protein 60 (HSP60), a DAMP ligand for TLR4, was observed in CHF cardiomyocytes under a confocal microscope. The maximum binding capacity (Bmax) of TLR4 was increased for LPS and HSP60, whereas the binding affinity (Kd) was not significantly changed. Furthermore, both LPS and HSP60 induced more robust production of inflammatory cytokines in CHF cardiomyocytes, which was reduced by TLR4‐blocking antibodies. We conclude that the expression, ligand‐binding capacity and pro‐inflammatory function of cardiomyocyte TLR4 are up‐regulated after long‐term MI, which promote inflammation and exacerbate heart failure. 相似文献
12.
The CD4+AT2R+ T cell subpopulation improves post‐infarction remodelling and restores cardiac function 下载免费PDF全文
Anna Skorska Stephan von Haehling Marion Ludwig Cornelia A. Lux Ralf Gaebel Gabriela Kleiner Christian Klopsch Jun Dong Caterina Curato Wassim Altarche‐Xifró Svetlana Slavic Thomas Unger Robert David 《Journal of cellular and molecular medicine》2015,19(8):1975-1985
Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4+ AT2R+ cells in the rat heart and spleen post‐infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4+ AT2R+ T cells in circulating blood, post‐infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4+ cells. CD4+ AT2R+ T cells within blood CD4+ T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4+ AT2R+ T cells which expressed regulatory FoxP3, secreted interleukin‐10 and other inflammatory‐related cytokines. Furthermore, intramyocardial injection of MI‐induced splenic CD4+ AT2R+ T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4+ AT2R+ cells as a T cell subset improving heart function post‐MI corresponding with reduced infarction size in a rat MI‐model. Our results indicate CD4+ AT2R+ cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof. 相似文献
13.
Truls Råmunddal 《Biochemical and biophysical research communications》2009,385(3):336-340
Background
The heart produces apolipoprotein-B containing lipoproteins (apoB) whose function is not well understood. The aim of this study was to evaluate importance of myocardial apoB for cardiac function, structure and survival in myocardial infarction (MI) and heart failure (HF).Methods and results
MI was induced in mice (n = 137) and myocardial apoB content was measured at 30 min, 3, 6, 24, 48, 120 h and 8 weeks post-MI. Transgenic mice overexpressing apoB (n = 27) and genetically matched controls (n = 27) were used to study the effects of myocardial apoB on cardiac function, remodeling, arrhythmias and survival after MI. Echocardiography was performed at rest and stress conditions at baseline, 2, 4 and 6 week post-MI and cumulative survival rate was registered. The myocardial apoB content increased both in the injured and the remote myocardium (p < 0.05) in response to ischemic injury. ApoB mice had 2-fold higher survival rate (p < 0.05) and better systolic function (p < 0.05) post-MI.Conclusion
Overexpression of apoB in the heart increases survival and improves cardiac function after acute MI. Myocardial apoB may be an important cardioprotective system in settings such as myocardial ischemia and HF. 相似文献14.
Mei Yang Jun Xiong Qiang Zou Dan-Dan Wang Cong-Xin Huang 《Journal of molecular histology》2018,49(6):555-565
Interstitial fibrosis after acute myocardial infarction (MI) leads to cardiac structural remodeling and dysfunction. The peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist chrysin has been shown to protect injured myocardium through suppression of oxidative stress and inflammation. This study was designed to investigate the effect and mechanism of chrysin on myocardial fibrosis. A rat MI model was created by ligating the left coronary artery. The rats with MI were treated with chrysin (40 mg/kg/day) or 0.5% carboxymethylcellulose sodium by intragastric administration for 4 weeks after operation. The effect of chrysin on cardiac fibroblasts (CFs) were also assessed in vitro. Echocardiography showed that cardiac function was significantly improved after chrysin treatment. Chrysin reduced the levels of MDA and SOD and GSH-Px in myocardial tissue. Chrysin attenuated the interstitial and perivascular fibrosis and the expression of collagenlin the peri-infarcted zone and remarkably decreased the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9. Chrysin up-regulated PPAR-γ and inhibited the nuclear factor-kappa B (NF-κB) pathway by suppressing inhibitor kappa B kinase β phosphorylation. Immunohistochemistry analysis and PCR detected downregulated expression of AP-1 after chrysin treatment. Chrysin also markedly reduced the increased α-SMA, typeland type III collagen expression of CFs mediated by AngII in vitro. In conclusion, chrysin has an antifibrosis cardioprotective effect on the infarct peripheral zone after MI. The underlined mechanism may be the up-regulation of PPAR-γ and inhibition of the NF-κB and AP1 pathway. 相似文献
15.
Megumi Eguchi Guoxiong Xu Ren‐Ke Li Gary Sweeney 《Journal of cellular and molecular medicine》2012,16(12):2925-2934
This study was conducted to examine the influence of acute streptozotocin‐induced diabetes on cardiac remodelling and function in mice subjected to myocardial infarction (MI) by coronary artery ligation. Echocardiography analysis indicated that diabetes induced deleterious cardiac functional changes as demonstrated by the negative differences of ejection fraction, fractional shortening, stroke volume, cardiac output and left ventricular volume 24 hrs after MI. Temporal analysis for up to 2 weeks after MI showed higher mortality in diabetic animals because of cardiac wall rupture. To examine extracellular matrix remodelling, we used fluorescent molecular tomography to conduct temporal studies and observed that total matrix metalloproteinase (MMP) activity in hearts was higher in diabetic animals at 7 and 14 days after MI, which correlated well with the degree of collagen deposition in the infarct area visualized by scanning electron microscopy. Gene arrays indicated temporal changes in expression of distinct MMP isoforms after 1 or 2 weeks after MI, particularly in diabetic mice. Temporal changes in cardiac performance were observed, with a trend of exaggerated dysfunction in diabetic mice up to 14 days after MI. Decreased radial and longitudinal systolic and diastolic strain rates were observed over 14 days after MI, and there was a trend towards altered strain rates in diabetic mouse hearts with dyssynchronous wall motion clearly evident. This correlated with increased collagen deposition in remote areas of these infarcted hearts indicated by Masson's trichrome staining. In summary, temporal changes in extracellular matrix remodelling correlated with exaggerated cardiac dysfunction in diabetic mice after MI. 相似文献
16.
17.
18.
19.
Shuai Mao Yubin Liang Peipei Chen Yuzhuo Zhang Xin Yin Minzhou Zhang 《Journal of cellular and molecular medicine》2020,24(17):10042-10051
Cardiac remodelling following myocardial infarction (MI) is a maladaptive change associated with progressive heart failure and compromises long‐term clinical outcome. A substantial proportion of patients afflicted by MI still develop adverse outcomes associated with cardiac remodelling. Therefore, it is crucial to identify biomarkers for the early prediction of cardiac remodelling. An in‐depth proteomics approach, including both semi‐quantitative and quantitative antibody arrays, was used to identify circulating biomarkers that may be associated with detrimental cardiac remodelling. Furthermore, statistical correlation analysis was performed between the candidate biomarkers and clinical cardiac remodelling data to demonstrate their clinical utility. A systematic proteomics approach revealed that sclerostin (SOST), growth differentiation factor‐15 (GDF‐15), urokinase‐type plasminogen activator (uPA), and midkine (MK) were increased, while monocyte chemotactic protein‐3 (MCP‐3) was uniquely decreased in MI patients who developed cardiac remodelling, compared to MI patients who did not develop cardiac remodelling and healthy humen. Moreover, correlation analyses between serum proteomes and cardiac remodelling echocardiographic parameters demonstrated a moderate positive association between left ventricular end‐diastolic volume index (LVEDVi) and the three serum proteins, uPA, MK and GDF‐15 (P < .05, respectively), and a moderate negative correlation between LV ejection fraction (LVEF) and these serum proteins (P < .05, respectively). Importantly, uPA and MK were firstly identified to be associated with the development of cardiac remodelling. The present study contributes to a better understanding of the various cytokines expressed during adverse cardiac remodelling. The identified biomarkers may facilitate early identification of patients at high risk of ischaemic heart failure pending further confirmation through larger clinical trials. 相似文献