首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

The surveillance of illegal anabolic practices in bovine meat production is necessary to guarantee consumers’ health. Screening strategies based on the recognition of indirect biological effects are considered by the community as promising tools to overcome some limitations of classical analytical methods and might therefore concur to ensure safer food for the consumer.

Objectives

The present work aims at characterizing the metabolic profile induced in liver by administration of anabolic steroids, and at identifying potential disturbances in the hepatic metabolism.

Methods

A total of 32 liver samples, 16 from untreated bulls and 16 from bulls treated with an ear implant (Revalor-XS®) containing trenbolone acetate (200 mg) and β-estradiol (40 mg), were analyzed following a LC–MS-based metabolomic analysis combining RP and HILIC chromatographic separations. Different multivariate statistical tools were applied to the datasets to select common metabolites that may be considered as potential markers based on their significant changes in concentrations after administration of sexual steroids.

Results

Eight candidate markers were identified. Moreover, a subset of four markers was also validated by a different laboratory that performed the same analysis using an independent instrumental and elaboration platform, confirming the robustness of the results achieved.

Conclusion

This study was performed mimicking experimental conditions that may be used during a potential misuse practice. It is promising in the objective of setting up an analytical strategy to highlight sexual steroids abuse in livestock animals.
  相似文献   

2.

Background

The Clusters of Orthologous Groups (COGs) of proteins systematize evolutionary related proteins into specific groups with similar functions. However, the available databases do not provide means to assess the extent of similarity between the COGs.

Aim

We intended to provide a method for identification and visualization of evolutionary relationships between the COGs, as well as a respective web server.

Results

Here we introduce the COGcollator, a web tool for identification of evolutionarily related COGs and their further analysis. We demonstrate the utility of this tool by identifying the COGs that contain distant homologs of (i) the catalytic subunit of bacterial rotary membrane ATP synthases and (ii) the DNA/RNA helicases of the superfamily 1.

Reviewers

This article was reviewed by Drs. Igor N. Berezovsky, Igor Zhulin and Yuri Wolf.
  相似文献   

3.

Background

The protease BACE1 (beta-site APP cleaving enzyme) is a major drug target in Alzheimer’s disease. However, BACE1 therapeutic inhibition may cause unwanted adverse effects due to its additional functions in the nervous system, such as in myelination and neuronal connectivity. Additionally, recent proteomic studies investigating BACE1 inhibition in cell lines and cultured murine neurons identified a wider range of neuronal membrane proteins as potential BACE1 substrates, including seizure protein 6 (SEZ6) and its homolog SEZ6L.

Methods and results

We generated antibodies against SEZ6 and SEZ6L and validated these proteins as BACE1 substrates in vitro and in vivo. Levels of the soluble, BACE1-cleaved ectodomain of both proteins (sSEZ6, sSEZ6L) were strongly reduced upon BACE1 inhibition in primary neurons and also in vivo in brains of BACE1-deficient mice. BACE1 inhibition increased neuronal surface levels of SEZ6 and SEZ6L as shown by cell surface biotinylation, demonstrating that BACE1 controls surface expression of both proteins. Moreover, mass spectrometric analysis revealed that the BACE1 cleavage site in SEZ6 is located in close proximity to the membrane, similar to the corresponding cleavage site in SEZ6L. Finally, an improved method was developed for the proteomic analysis of murine cerebrospinal fluid (CSF) and was applied to CSF from BACE-deficient mice. Hereby, SEZ6 and SEZ6L were validated as BACE1 substrates in vivo by strongly reduced levels in the CSF of BACE1-deficient mice.

Conclusions

This study demonstrates that SEZ6 and SEZ6L are physiological BACE1 substrates in the murine brain and suggests that sSEZ6 and sSEZ6L levels in CSF are suitable markers to monitor BACE1 inhibition in mice.
  相似文献   

4.

Background

Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups.

Methods

We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences.

Results

We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins.

Conclusions

HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas.
  相似文献   

5.

Background

Outer membrane vesicles (OMVs) of Acinetobacter baumannii are cytotoxic and elicit a potent innate immune response. OMVs were first identified in A. baumannii DU202, an extensively drug-resistant clinical strain. Herein, we investigated protein components of A. baumannii DU202 OMVs following antibiotic treatment by proteogenomic analysis.

Methods

Purified OMVs from A. baumannii DU202 grown in different antibiotic culture conditions were screened for pathogenic and immunogenic effects, and subjected to quantitative proteomic analysis by one-dimensional electrophoresis and liquid chromatography combined with tandem mass spectrometry (1DE-LC-MS/MS). Protein components modulated by imipenem were identified and discussed.

Results

OMV secretion was increased >?twofold following imipenem treatment, and cytotoxicity toward A549 human lung carcinoma cells was elevated. A total of 277 proteins were identified as components of OMVs by imipenem treatment, among which β-lactamase OXA-23, various proteases, outer membrane proteins, β-barrel assembly machine proteins, peptidyl-prolyl cis–trans isomerases and inherent prophage head subunit proteins were significantly upregulated.

Conclusion

In vitro stress such as antibiotic treatment can modulate proteome components in A. baumannii OMVs and thereby influence pathogenicity.
  相似文献   

6.
7.

Background

Cerebrospinal fluid (CSF) is an important source of potential biomarkers that affect the brain. Biomarkers for neurodegenerative disorders are needed to assist in diagnosis, monitoring disease progression and evaluating efficacy of therapies. Recent studies have demonstrated the involvement of tyrosine kinases in neuronal cell death. Thus, neurodegeneration in the brain is related to altered tyrosine phosphorylation of proteins in the brain and identification of abnormally phosphorylated tyrosine peptides in CSF has the potential to ascertain candidate biomarkers for neurodegenerative disorders.

Methods

In this study, we used an antibody-based tyrosine phosphopeptide enrichment method coupled with high resolution Orbitrap Fusion Tribrid Lumos Fourier transform mass spectrometer to catalog tyrosine phosphorylated peptides from cerebrospinal fluid. The subset of identified tyrosine phosphorylated peptides was also validated using parallel reaction monitoring (PRM)-based targeted approach.

Results

To date, there are no published studies on global profiling of phosphotyrosine modifications of CSF proteins. We carried out phosphotyrosine profiling of CSF using an anti-phosphotyrosine antibody-based enrichment and analysis using high resolution Orbitrap Fusion Lumos mass spectrometer. We identified 111 phosphotyrosine peptides mapping to 66 proteins, which included 24 proteins which have not been identified in CSF previously. We then validated a set of 5 tyrosine phosphorylated peptides in an independent set of CSF samples from cognitively normal subjects, using a PRM-based targeted approach.

Conclusions

The findings from this deep phosphotyrosine profiling of CSF samples have the potential to identify novel disease-related phosphotyrosine-containing peptides in CSF.
  相似文献   

8.

Background

Metabolites disrupted by abnormal state of human body are deemed as the effect of diseases. In comparison with the cause of diseases like genes, these markers are easier to be captured for the prevention and diagnosis of metabolic diseases. Currently, a large number of metabolic markers of diseases need to be explored, which drive us to do this work.

Methods

The existing metabolite-disease associations were extracted from Human Metabolome Database (HMDB) using a text mining tool NCBO annotator as priori knowledge. Next we calculated the similarity of a pair-wise metabolites based on the similarity of disease sets of them. Then, all the similarities of metabolite pairs were utilized for constructing a weighted metabolite association network (WMAN). Subsequently, the network was utilized for predicting novel metabolic markers of diseases using random walk.

Results

Totally, 604 metabolites and 228 diseases were extracted from HMDB. From 604 metabolites, 453 metabolites are selected to construct the WMAN, where each metabolite is deemed as a node, and the similarity of two metabolites as the weight of the edge linking them. The performance of the network is validated using the leave one out method. As a result, the high area under the receiver operating characteristic curve (AUC) (0.7048) is achieved. The further case studies for identifying novel metabolites of diabetes mellitus were validated in the recent studies.

Conclusion

In this paper, we presented a novel method for prioritizing metabolite-disease pairs. The superior performance validates its reliability for exploring novel metabolic markers of diseases.
  相似文献   

9.

Introduction

The pathogenicity at differing points along the aggregation pathway of many fibril-forming proteins associated with neurodegenerative diseases is unclear. Understanding the effect of different aggregation states of these proteins on cellular processes is essential to enhance understanding of diseases and provide future options for diagnosis and therapeutic intervention.

Objectives

To establish a robust method to probe the metabolic changes of neuronal cells and use it to monitor cellular response to challenge with three amyloidogenic proteins associated with neurodegenerative diseases in different aggregation states.

Method

Neuroblastoma SH-SY5Y cells were employed to design a robust routine system to perform a statistically rigorous NMR metabolomics study into cellular effects of sub-toxic levels of alpha-synuclein, amyloid-beta 40 and amyloid-beta 42 in monomeric, oligomeric and fibrillar conformations.

Results

This investigation developed a rigorous model to monitor intracellular metabolic profiles of neuronal cells through combination of existing methods. This model revealed eight key metabolites that are altered when neuroblastoma cells are challenged with proteins in different aggregation states. Metabolic pathways associated with lipid metabolism, neurotransmission and adaptation to oxidative stress and inflammation are the predominant contributors to the cellular variance and intracellular metabolite levels. The observed metabolite changes for monomer and oligomer challenge may represent cellular effort to counteract the pathogenicity of the challenge, whereas fibrillar challenge is indicative of system shutdown. This implies that although markers of stress are more prevalent under oligomeric challenge the fibrillar response suggests a more toxic environment.

Conclusion

This approach is applicable to any cell type that can be cultured in a laboratory (primary or cell line) as a method of investigating how protein challenge affects signalling pathways, providing additional understanding as to the role of protein aggregation in neurodegenerative disease initiation and progression.
  相似文献   

10.

Introduction

Nearly all the enzymes that mediate the metabolism of polyunsaturated fatty acids (PUFAs) are present in the kidney. However, the correlation of renal dysfunction with PUFAs metabolism in uremic patients remains unknown.

Objectives

To test whether the alterations in the metabolism of PUFAs reflect the renal dysfunction in uremic patients.

Methods

LC–MS/MS-based oxylipin profiling was conducted for the plasma samples from the uremic patients and controls. The data were analyzed by principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). The receiver operating characteristic (ROC) curves and the correlation of the estimated glomerular filtration rate (eGFR) with the key markers were evaluated. Furthermore, qPCR analysis of the whole blood cells was conducted to investigate the possible mechanisms. In addition, a 2nd cohort was used to validate the findings from the 1st cohort.

Results

The plasma oxylipin profile distinguished the uremic patients from the controls successfully by using both PCA and OPLS-DA models. 5,6-Dihydroxyeicosatrienoic acid (5,6-DHET), 5-hydroxyeicosatetraenoic acid (5-HETE), 9(10)-epoxyoctadecamonoenoic acid [9(10)-EpOME] and 12(13)-EpOME were identified as the key markers to discriminate the patients from controls. The excellent predictive performance of these four markers was validated by ROC analysis. The eGFR significantly correlated with plasma levels of 5,6-DHET and 5-HETE positively but with plasma 9(10)-EpOME and 12(13)-EpOME negatively. The changes of these markers may account for the inactivation of cytochrome P450 2C18, 2C19, microsome epoxide hydrolase (EPHX1), and 5-lipoxygenase in the patients.

Conclusion

The alterations in plasma metabolic profile reflect the renal dysfunction in the uremic patients.
  相似文献   

11.
12.

Background

The influenza matrix protein (M1) layer under the viral membrane plays multiple roles in virus assembly and infection. N-domain and C-domain are connected by a loop region, which consists of conserved RQMV motif.

Methods

The function of the highly conserve RQMV motif in the influenza virus life cycle was investigated by site-directed mutagenesis and by rescuing mutant viruses by reverse genetics. Co-localization of M1 with nucleoprotein (NP), clustered mitochondria homolog protein (CLUH), chromosome region maintenance 1 protein (CRM1), or plasma membrane were studied by confocal microscopy.

Results

Mutant viruses containing an alanine substitution of R163, Q164 and V166 result in the production of the virus indistinguishable from the wild type phenotype. Single M165A substitution was lethal for rescuing infection virus and had a striking effect on the distribution of M1 and NP proteins. We have observed statistically significant reduction in distribution of both M165A (p?0,05) and NP (p?0,001) proteins to the nucleus in the cells transfected with the reverse –genetic system with mutated M1. M165A protein was co-localized with CLUH protein in the cytoplasm and around the nucleus but transport of M165-CLUH complex through the nuclear membrane was restricted.

Conclusions

Our finding suggest that methionine 165 is essential for virus replication and RQMV motif is involved in the nuclear import of viral proteins.
  相似文献   

13.

Objective

Develop an engineered cell line containing two flexible gene expression systems enabling the continuous production of tailor-made recombinant gammaretrovirus with predictable productivities through targeted integration.

Results

Dual-FLEX cells (dFLEX) contain two independent recombinase-mediated cassette exchange (RMCE) systems which confer flexibility to the expression of different transgene and envelope combinations. The flexible envelope expression in dFLEX cells was validated by pseudotyping retrovirus particles with three different viral envelope proteins—GaLV, 4070A and VSV-G. Our results show that dFLEX cells are able to provide high titers of infectious retroviral particles with a single-copy integration of the envelope constructs after RMCE. The integrated CRE/Lox tagging cassette was amenable to express envelope proteins both using constitutive (i.e. CMV) and inducible (i.e. Tet-on) promoters.

Conclusions

dFLEX cell line provides predictable productivities of recombinant retrovirus pseudotyped with different envelope proteins broadening the tropism of particles that can be generated and thus accelerating the research and development of retrovirus-based products.
  相似文献   

14.

Background

Biomarker discovery holds the promise for advancing personalized medicine as the biomarkers can help match patients to optimal treatment to improve patient outcomes. However, serious concerns have been raised because very few molecular biomarkers or signatures discovered from high dimensional array data can be successfully validated and applied to clinical use. We propose good practice guidelines as well as a novel tool for biomarker discovery and use breast cancer prognosis as a case study to illustrate the proposed approach.

Results

We applied the proposed approach to a publicly available breast cancer prognosis dataset and identified small numbers of predictive markers for patient subpopulations stratified by clinical variables. Results from an independent cross-platform validation set show that our model compares favorably to other gene signature and clinical variable based prognostic tools. About half of the discovered candidate markers can individually achieve very good performance, which further demonstrate the high quality of feature selection. These candidate markers perform extremely well for young patient with estrogen receptor-positive, lymph node-negative early stage breast cancers, suggesting a distinct subset of these patients identified by these markers is actually at high risk of recurrence and may benefit from more aggressive treatment than cur-rent practice.

Conclusion

The results show that by following good practice guidelines, we can identify highly predictive genes in high dimensional breast cancer array data. These predictive genes have been successfully validated using an independent cross-platform dataset.
  相似文献   

15.

Background

Moyamoya disease (MMD) is an uncommon cerebrovascular condition with unknown etiology characterized by slowly progressive stenosis or occlusion of the bilateral internal carotid arteries associated with an abnormal vascular network. MMD is a major cause of stroke, specifically in the younger population. Diagnosis is based on only radiological features as no other clinical data are available. The purpose of this study was to identify novel biomarker candidate proteins differentially expressed in the cerebrospinal fluid (CSF) of patients with MMD using proteomic analysis.

Methods

For detection of biomarkers, CSF samples were obtained from 20 patients with MMD and 12 control patients. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with an anion exchange chip in three different buffer conditions. After expression difference mapping was undertaken using the obtained protein profiles, a comparative analysis was performed.

Results

A statistically significant number of proteins (34) were recognized as single biomarker candidate proteins which were differentially detected in the CSF of patients with MMD, compared to the control patients (p < 0.05). All peak intensity profiles of the biomarker candidates underwent classification and regression tree (CART) analysis to produce prediction models. Two important biomarkers could successfully classify the patients with MMD and control patients.

Conclusions

In this study, several novel biomarker candidate proteins differentially expressed in the CSF of patients with MMD were identified by a recently developed proteomic approach. This is a pilot study of CSF proteomics for MMD using SELDI technology. These biomarker candidates have the potential to shed light on the underlying pathogenesis of MMD.
  相似文献   

16.

Background

Ovarian cancer is the most lethal gynecologic malignancy, with the majority of cases diagnosed at an advanced stage when treatments are less successful. Novel serum protein markers are needed to detect ovarian cancer in its earliest stage; when detected early, survival rates are over 90%. The identification of new serum biomarkers is hindered by the presence of a small number of highly abundant proteins that comprise approximately 95% of serum total protein. In this study, we used pooled serum depleted of the most highly abundant proteins to reduce the dynamic range of proteins, and thereby enhance the identification of serum biomarkers using the quantitative proteomic method iTRAQ®.

Results

Medium and low abundance proteins from 6 serum pools of 10 patients each from women with serous ovarian carcinoma, and 6 non-cancer control pools were labeled with isobaric tags using iTRAQ® to determine the relative abundance of serum proteins identified by MS. A total of 220 unique proteins were identified and fourteen proteins were elevated in ovarian cancer compared to control serum pools, including several novel candidate ovarian cancer biomarkers: extracellular matrix protein-1, leucine-rich alpha-2 glycoprotein-1, lipopolysaccharide binding protein-1, and proteoglycan-4. Western immunoblotting validated the relative increases in serum protein levels for several of the proteins identified.

Conclusions

This study provides the first analysis of immunodepleted serum in combination with iTRAQ® to measure relative protein expression in ovarian cancer patients for the pursuit of serum biomarkers. Several candidate biomarkers were identified which warrant further development.
  相似文献   

17.

Objective

A modified method was used for cell entrapped beads (CEBs) preparation and two aeration intensities (low and high aeration intensity) was supplied as factors to investigate the change of quorum quenching performance for membrane biofouling in membrane bioreactor (MBR).

Results

Dehydrogenase activity and growth trend of activated sludge were improved at high aeration intensity. Compared with C-MBR (with vacant beads), QQ-MBR (with CEBs) had more stable quorum quenching activity and longer application time at high aeration intensity, in which the proteins and polysaccharides were reduced by 15 and 20%, respectively. The difference of EPS concentration in mixed liquor was attributed to the protein concentration controlled by quorum quenching bacteria, meanwhile sufficient organics was necessary to maintain the process.

Conclusions

The better settleability, greater stability and relatively lower hydrophobicity of activated sludge properties was achieved with quorum quenching. The scouring effect of CEBs was promoted at high aeration intensity, further controlling the membrane biofouling.
  相似文献   

18.

Background

Planar cell polarity (PCP) is a phenomenon in which epithelial cells are polarized along the plane of a tissue. PCP is critical for a variety of developmental processes and is regulated by a set of evolutionarily conserved PCP signaling proteins. Many of the PCP proteins adopt characteristic asymmetric localizations on the opposing cellular boundaries. Currently, the molecular mechanisms that establish and maintain this PCP asymmetry remain largely unclear. Newly synthesized integral PCP proteins are transported along the secretory transport pathway to the plasma membranes. Once delivered to the plasma membranes, PCP proteins undergo endocytosis. Recent studies reveal insights into the intracellular trafficking of PCP proteins, suggesting that intracellular trafficking of PCP proteins contributes to establishing the PCP asymmetry.

Objective

To understand the intracellular trafficking of planar cell polarity proteins in the secretory transport pathway and endocytic transport pathway.

Methods

This review summarizes our current understanding of the intracellular trafficking of PCP proteins. We highlights the molecular mechanisms that regulate sorting of PCP proteins into transport vesicles and how the intracellular trafficking process regulates the asymmetric localizations of PCP proteins.

Results

Current studies reveal novel insights into the molecular mechanisms mediating intracellular trafficking of PCP proteins. This process is critical for delivering newly synthesized PCP proteins to their specific destinations, removing the unstable or mislocalized PCP proteins from the plasma membranes and preserving tissue polarity during proliferation of mammalian skin cells.

Conclusion

Understanding how PCP proteins are delivered in the secretory and endocytic transport pathway will provide mechanistic insights into how the asymmetric localizations of PCP proteins are established and maintained.
  相似文献   

19.

Background

Epithelial ovarian cancer is the second most lethal gynecological cancer worldwide. Ascites can be found in all clinical stages, however in advanced disease stages IIIC and IV it is more frequent and could be massive, associated with worse prognosis. Due to the above, it was our interest to understanding how the ascites of ovarian cancer patients induces the mechanisms by which the cells present in it acquire a more aggressive phenotype and to know new proteins associated to this process.

Methods

A proteomic analysis of SKOV-3 cells treated with five different EOC ascites was performed by two-dimensional electrophoresis coupled to MALDI-TOF. The level of expression of the proteins of interest was validated by RT-PCR because several of these proteins have only been reported at the messenger level.

Results

Among the proteins identified that increased their expression in ascites-treated SKOV-3 cells, were Ran GTPase, ZNF268, and Synaptotagmin like-3. On the other hand, proteins that were negatively regulated by ascites were HLA-I, HSPB1, ARF1, Synaptotagmin 1, and hnRNPH1, among others. Furthermore, an interactome for every one of these proteins was done in order to identify biological processes, molecular actions, and cellular components in which they may participate.

Conclusions

Identified proteins participate in cellular processes highly relevant to the aggressive phenotype such as nuclear transport, regulation of gene expression, vesicular trafficking, evasion of the immune response, invasion, metastasis, and in resistance to chemotherapy. These proteins may represent a source of information which has the potential to be evaluated for the design of therapies directed against these malignant cells that reside on ovarian cancer ascites.
  相似文献   

20.

Background

Renal oncocytomas (ROs) are benign epithelial tumors of the kidney whereas chromophobe renal cell carcinoma (chRCCs) are malignant renal tumors. The latter constitute 5–7% of renal neoplasias. ROs and chRCCs show pronounced molecular and histological similarities, which renders their differentiation demanding. We aimed for the differential proteome profiling of ROs and early-stage chRCCs in order to better understand distinguishing protein patterns.

Methods

We employed formalin-fixed, paraffin-embedded samples (six RO cases, six chRCC cases) together with isotopic triplex dimethylation and a pooled reference standard to enable cohort-wide quantitative comparison. For lysosomal-associated membrane protein 1 (LAMP1) and integrin alpha-V (ITGAV) we performed corroborative immunohistochemistry (IHC) in an extended cohort of 42 RO cases and 31 chRCC cases.

Results

At 1% false discovery rate, we identified?>?3900 proteins, of which?>?2400 proteins were consistently quantified in at least four RO and four chRCC cases. The proteomic expression profiling discriminated ROs and chRCCs and highlighted established features such as accumulation of mitochondrial proteins in ROs together with emphasizing the accumulation of endo-lysosomal proteins in chRCCs. In line with the proteomic data, IHC showed enrichment of LAMP1 in chRCC and of ITGAV in RO.

Conclusion

We present one of the first differential proteome profiling studies on ROs and chRCCs and highlight differential abundance of LAMP1 and ITGAV in these renal tumors.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号