首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.  相似文献   

2.
Dicer is a cellular enzyme required for the processing of pre‐miRNA molecules into mature miRNA, and Dicer and miRNA biogenesis have been found to play important roles in a variety of physiologic processes. Recently, reports of alterations in miRNA expression levels in cultured pre‐adipogenic cell lines during differentiation and findings of differences between the miRNA expression signatures of white and brown adipose have suggested that miRNA molecules might regulate adipocyte differentiation and the formation of adipose tissue. However, direct evidence that miRNAs regulate adipogenesis is lacking. To determine if Dicer and mature miRNA govern adipocyte differentiation, we utilized primary cells isolated from mice bearing Dicer‐conditional alleles to study adipogenesis in the presence or absence of miRNA biogenesis. Our results reveal that Dicer is required for adipogenic differentiation of mouse embryonic fibroblasts and primary cultures of pre‐adipocytes. Furthermore, the requirement for Dicer in adipocyte differentiation is not due to miRNA‐mediated alterations in cell proliferation, as deletion of the Ink4a locus and the prevention of premature cellular senescence normally induced in primary cells upon Dicer ablation fails to rescue adipogenic differentiation in fibroblasts and pre‐adipocytes. J. Cell. Biochem. 110: 812–816, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Lactoferrin has been associated with insulin sensitivity in vivo and in vitro studies. We aimed to test the effects of lactoferrin on human subcutaneous and visceral preadipocytes. Human subcutaneous and visceral preadipocytes were cultured with increasing lactoferrin (hLf, 0.1, 1, 10 μM) under differentiation conditions. The effects of lactoferrin on adipogenesis were studied through the expression of different adipogenic and inflammatory markers, AMPK activation and Retinoblastoma 1 (RB1) activity. The response to insulin was evaluated through Ser473AKT phosphorylation. In both subcutaneous and visceral preadipocytes, lactoferrin (1 and 10 μM) increased adipogenic gene expressions and protein levels (fatty acid synthase, PPARγ, FABP4, ADIPOQ, ACC and STAMP2) and decreased inflammatory markers (IL8, IL6 and MCP1) dose-dependently in parallel to increased insulin-induced Ser473AKT phosphorylation. In addition to these adipogenic effects, lactoferrin decreased significantly AMPK activity (reducing pThr172AMPK and pSer79ACC) and RB1 activity (increasing the pser807/811RB1/RB1 ratio). In conclusion, these results suggest that lactoferrin promotes adipogenesis in human adipocytes by enhancing insulin signaling and inhibiting RB1 and AMPK activities.  相似文献   

4.
The purpose of this study is to investigate the effects of euphorbiasteroid, a component of Euphorbia lathyris L., on adipogenesis of 3T3‐L1 pre‐adipocytes and its underlying mechanisms. Euphorbiasteroid decreased differentiation of 3T3‐L1 cells via reduction of intracellular triglyceride (TG) accumulation at concentrations of 25 and 50 μM. In addition, euphorbiasteroid altered the key regulator proteins of adipogenesis in the early stage of adipocyte differentiation by increasing the phosphorylation of AMP‐activated protein kinase (AMPK) and acetyl‐CoA carboxylase. Subsequently, levels of adipogenic proteins, including fatty acid synthase, peroxisome proliferator‐activated receptor‐γ and CCAAT/enhancer‐binding protein α, were decreased by euphorbiasteroid treatment at the late stage of adipocyte differentiation. The anti‐adipogenic effect of euphorbiasteroid may be derived from inhibition of early stage of adipocyte differentiation. Taken together, euphorbiasteroid inhibits adipogenesis of 3T3‐L1 cells through activation of the AMPK pathway. Therefore, euphorbiasteroid and its source plant, E. lathyris L., could possibly be one of the fascinating anti‐obesity agent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
6.
7.
Objective: The aim of this study was to evaluate the effects of the selective angiotensin receptor 1 antagonist irbesartan on the growth and differentiation of the adipocytes in obese Zucker fa/fa rats. Research Methods and Procedures: Obese Zucker fa/fa rats were treated by oral route for 3 weeks with irbesartan at doses of 3–10‐30 mg/kg per day. The adipocyte differentiation was evaluated by analyzing tissue samples of white (retroperitoneal) or brown (interscapular) adipose tissue for the presence of peroxisome proliferator activated receptor γ, leptin, and the activity of glycerol‐3‐phosphate dehydrogenase. Results: This study showed that the treatment of obese Zucker fa/fa with irbesartan effectively reduced the differentiation of adipocytes within brown (interscapular) and white (retroperitoneal) adipose tissue. In fact, irbesartan significantly (p < 0.01) and dose‐dependently reduced the tissue levels of leptin, peroxisome proliferator activated receptor γ, and the activity of the enzyme glycerol‐3‐phoshate dehydrogenase accepted markers of adipocyte differentiation. None of the tested doses of irbesartan affected these markers in non‐obese rats. Discussion: The antagonism of the angiotensin receptor 1 receptors with irbesartan reduces the adipogenic activity of angiotensin II in obese Zucker rats, with the endpoint being reduction of the growth and differentiation of the adipocytes within the adipose tissue.  相似文献   

8.
Adipose stromal cells proliferate and differentiate into adipocytes, providing a valuable model system for studies of adipocyte biology. We compared differentiation protocols for human preadipocytes and report on their metabolic phenotypes. By simply prolonging the adipogenic induction period from the first 3 to 7 days, the proportion of cells acquiring adipocyte morphology increased from 30–70% to over 80% in human subcutaneous preadipocytes (passages 5–6). These morphological changes were accompanied by increases in the adipogenic marker expression and improved adipocyte metabolic phenotypes: enhanced responses to β‐adrenergically stimulated lipolysis and to insulin‐stimulated glucose metabolism into triglyceride (TG). Confirming previous studies, fetal bovine serum (FBS) dose‐dependently inhibited adipogenesis. However, in subcutaneous preadipocytes that differentiate well (donor‐dependant high capacity and subcultured fewer than two times), the use of 7d‐induction protocols in both 3% FBS and serum‐free conditions allowed >80% differentiation. Responsiveness to β‐adrenergically stimulated lipolysis was lower in 3% FBS. Rates of insulin‐stimulated glucose uptake were higher in adipocytes differentiated with 3% FBS, whereas the sensitivity to insulin was almost identical between the two groups. In summary, extending the length of the induction period in adipogenic cocktail improves the degree of differentiation and responses to key metabolic hormones. This protocol permits functional analysis of metabolic phenotypes in valuable primary human adipocyte cultures through multiple passages.  相似文献   

9.
Objective: To examine the possibility that interleukin‐6 (IL‐6) can act as a paracrine regulator in adipose tissue by examining effects on adipogenic genes and measuring interstitial IL‐6 concentrations in situ. Research Methods and Procedures: Circulating and interstitial IL‐6 concentrations in abdominal and femoral adipose tissue were measured using the calibrated microdialysis technique in 20 healthy male subjects. The effects of adipose cell enlargement on gene expression and IL‐6 secretion were examined, as well as the effect of IL‐6 in vitro on gene expression of adiponectin and other markers of adipocyte differentiation. Results: The IL‐6 concentration in the interstitial fluid was ~100‐fold higher than that in plasma, suggesting that IL‐6 may be a paracrine regulator of adipose tissue. This was further supported by the finding that adding IL‐6 in vitro at similar concentrations down‐regulated the expression of adiponectin, aP2, and PPARγ‐2 in cultured human adipose tissue. In addition, gene expression and release of IL‐6, both in vivo and in vitro, correlated with adipose cell size. Discussion: These data suggest that IL‐6 may be a paracrine regulator of adipose tissue. Furthermore, increased adipose tissue production of IL‐6 after hypertrophic enlargement of the adipose cells may detrimentally affect systemic insulin action by inducing adipose tissue dysfunction with impaired differentiation of the pre‐adipocytes and/or adipocytes and lower adiponectin.  相似文献   

10.
Recently, it has been found that long-chain fatty acids activate the G protein-coupled receptors (GPRs), GPR120 and GPR40. However, there have been no reports to date on the possible physiological roles of these GPRs in adipose tissue development and adipocyte differentiation. GPR120 mRNA was highly expressed in the four different adipose tissues, and the amount of mRNA was elevated in adipose tissues of mice fed a high fat diet. However, GPR40 mRNA was not detected in any of the adipose tissues. The expression of GPR120 mRNA was higher in adipocytes compared to stromal-vascular (S-V) cells. The level of GPR120 mRNA increased during adipocyte differentiation in 3T3-L1 cells. Similar results were observed in human adipose tissue, human preadipocytes, and cultured adipocytes. Moreover, use of a small interference RNA (siRNA) to down-regulate GPR120 expression resulted in inhibition of adipocyte differentiation. Our results suggest that GPR120 regulates adipogenic processes such as adipocyte development and differentiation.  相似文献   

11.
12.
Perilipin 1 (Plin1) localizes at the surface of lipid droplets to regulate triglyceride storage and hydrolysis in adipocytes. Plin1 defect leads to low adiposity in mice and partial lipodystrophy in human. This study investigated the roles of Plin1 in adipocyte differentiation. Plin1 null (-/-) mice showed plenty of multilocular adipocytes and small unilocular adipocytes in adipose tissue, along with lack of a subpopulation of adipose progenitor cells capable of in vivo adipogenesis and along with downregulation of adipogenic pathway. Before initiation of differentiation, adipose stromal-vascular cells (SVCs) from Plin1-/- mice already accumulated numerous tiny lipid droplets, which increased in number and size during the first 12-h induction but thereafter became disappeared at day 1 of differentiation. The adipogenic signaling was dysregulated despite protein level of PPARγ was near normal in Plin1-/- SVCs like in Plin1-/- adipose tissue. Heterozygous Plin1+/- SVCs were able to develop lipid droplets, with both the number and size more than in Plin1-/- SVCs but less than in Plin1+/+ SVCs, indicating that Plin1 haploinsufficiency accounts for attenuated adipogenesis. Aberrant lipid droplet growth and differentiation of Plin1-/- SVCs were rescued by adenoviral Plin1 expression and were ameliorated by enhanced or prolonged adipogenic stimulation. Our finding suggests that Plin1 plays an important role in adipocyte differentiation and provides an insight into the pathology of partial lipodystrophy in patients with Plin1 mutation.  相似文献   

13.
14.
Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue.  相似文献   

15.
Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism.  相似文献   

16.

Background  

In severe obesity, as well as in normal development, the growth of adipose tissue is the result of an increase in adipocyte size and numbers, which is underlain by the stimulation of adipogenic differentiation of precursor cells. A better knowledge of the pathways that regulate adipogenesis is therefore essential for an improved understanding of adipose tissue expansion. As microRNAs (miRNAs) have a critical role in many differentiation processes, our study aimed to identify the role of miRNA-mediated gene silencing in the regulation of adipogenic differentiation.  相似文献   

17.
18.
19.
Brown adipocytes play an important role in regulating energy balance, and there is a good correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism of white adipocyte differentiation has been well characterized, brown adipogenesis has not been studied extensively. Moreover, extracellular factors that regulate brown adipogenic differentiation are not fully understood. Here, we assessed the mechanism of the regulatory action of myostatin in brown adipogenic differentiation using primary brown preadipocytes. Our results clearly showed that differentiation of brown adipocytes was significantly inhibited by myostatin treatment. In addition, myostatin-induced suppression of brown adipogenesis was observed during the early phase of differentiation. Myostatin induced the phosphorylation of Smad3, which led to increased β-catenin stabilization. These effects were blocked by treatment with a Smad3 inhibitor. Expression of brown adipocyte-related genes, such as PPAR-γ, UCP-1, PGC-1α, and PRDM16, were dramatically down-regulated by treatment with myostatin, and further down-regulated by co-treatment with a β-catenin activator. Taken together, the present study demonstrated that myostatin is a potent negative regulator of brown adipogenic differentiation by modulation of Smad3-induced β-catenin stabilization. Our findings suggest that myostatin could be used as an extracellular factor in the control of brown adipocyte differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号