首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two new brackish pleurostomatid ciliates, Amphileptus spiculatus sp. n. and A. bellus sp. n. were collected from mangrove wetlands of southern China and their morphology and molecular phylogeny were studied. Amphileptus spiculatus sp. n. can be distinguished from congeners by the presence of 11–14 right and 6–8 left kineties, two macronuclear nodules and a conspicuous beak‐like anterior body end. Amphileptus bellus sp. n. is characterized by the presence of 2–4 macronuclear nodules, 31–35 right and 6 or 7 left kineties and two types of extrusomes. Phylogenetic analyses based on SSU rDNA sequences data indicate that the family Amphileptidae is paraphyletic.  相似文献   

2.
The external morphology and internal cell fine structure of a new species of Tovelliaceae, Tovellia rubescens n. sp., is described. Phylogenetic analyses based on partial LSU rDNA sequences place the new species in a clade containing Tovellia species that accumulate red pigments and identify T. aveirensis as its closest known relative. Cells of T. rubescens n. sp. were mostly round and had the cingulum located near the middle, with its ends displaced about one cingular width. Small numbers of distinctly flat cells appeared in culture batches; their significance could not be determined. Cells of the new species in culture batches progressively changed from a yellowish‐green, mainly due to chloroplast colour, to a reddish‐brown colour that appeared associated with lipid bodies. The switch to a reddish colour happened earlier in batches grown in medium lacking sources of N or P. Pigment analyses by HPLC‐MS/MS revealed the presence of astaxanthin and astaxanthin‐related metabolites in the new species, but also in T. aveirensis, in which a reddish colour was never observed. The chloroplast arrangement of T. rubescens n. sp. resembled that of T. aveirensis, with lobes radiating from a central pyrenoid complex. The flagellar apparatus and pusular system fell within the general features described from other Tovelliaceae. A row of microtubules interpretable as a microtubular strand of the peduncle was present. Spiny resting cysts with red contents and an ITS sequence identical to that of cultured material of the new species were found in the original locality.  相似文献   

3.
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper‐Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.  相似文献   

4.
Mesodinium is a globally distributed ciliate genus forming frequent and recurrent blooms in diverse marine habitats. Here, we describe a new marine species, Mesodinium coatsi n. sp., originally isolated from interstitial water of surface sand samples collected at Mohang Beach, Korea. The species was maintained under a mixotrophic growth condition for longer than 1 yr by providing a cryptomonad, Chroomonas sp., as the sole prey. Cell morphology and subcellular structure were examined by light microscopy, scanning, and transmission electron microscopy, and molecular phylogeny was inferred from nuclear‐encoded 18S rDNA sequence data. Like other Mesodinium species, M. coatsi consisted of two hemispheres separated by two types of kinetids, and had tentacles located at the oral end of the cell. Several food vacuoles were observed in the cytoplasm, and partially digested prey cells sometimes existed in food vacuoles. Kinetids and the associated accessory structures were quite similar to those previously reported, but M. coatsi was differentiated from other marine Mesodinium species by ultrastructural characters of the dikinetids, polykinetids, and tentacles. We also provided a detailed illustration of infraciliature. Molecular phylogeny revealed that M. coatsi and Mesodinium chamaeleon were closely related to each other.  相似文献   

5.
A hypotrichous ciliate, Paracladotricha salina n. g., n. sp., was discovered in hypersaline waters (salinity about 80‰) from Qingdao, China. Its morphology and some major ontogenetic stages were studied and the phylogenetic position was estimated using standard methods. Paracladotricha salina is characterized by a flexible, more or less slender body (size 50–120 × 20–35 μm), a gonostomatid oral apparatus, one short and two long frontoventral rows, four macronuclear nodules, almost completely reduced dorsal kineties 1–3, and a loss of several parts of the ciliature, namely, the slightly shortened ciliary row of the adoral membranelles, the paroral, and the buccal, the postoral and pretransverse ventral, the transverse, and the caudal cirri. The ontogenesis is rather simple: anlage II of both filial products and anlage III of the opisthe originate de novo, while anlagen IV and V are formed within the parental rows. This combination of features requires the establishment of a new genus, Paracladotricha, which is, according to the morphological data, closely related to Schmidingerothrix and Cladotricha. The small‐subunit rRNA gene was sequenced, indicating that P. salina is, as also demonstrated by the oral apparatus, a member of the gonostomatids. We provide a first, vague hypothesis about the phylogenetic relationships of the Gonostomatidae, Cladotrichidae, and Schmidingerotrichidae. However, since molecular data of the type species of these higher taxa are lacking, their validity and relationships remain obscure.  相似文献   

6.
Holomastigotes is a protist genus (Parabasalia: Spirotrichonymphea) that resides in the hindguts of “lower” termites. It can be distinguished from other parabasalids by spiral flagellar bands that run along the entire length of the cell, an anterior nucleus, a reduced or absent axostyle, the presence of spherical vesicles inside the cells, and the absence of ingested wood particles. Eight species have been described based on their morphology so far, although no molecular data were available prior to this study. We determined the 18S rRNA gene sequences of Holomastigotes from the hindguts of Hodotermopsis sjostedti, Reticulitermes flavipes, Reticulitermes lucifugus, and Reticulitermes tibialis. Phylogenetic analyses placed all sequences in an exclusive and well‐supported clade with the type species, Holomastigotes elongatum from R. lucifugus. However, the phylogenetic position of Holomastigotes within the Spirotrichonymphea was not resolved. We describe two new species, Holomastigotes flavipes n. sp. and Holomastigotes tibialis n. sp., inhabiting the hindguts of R. flavipes and R. tibialis, respectively.  相似文献   

7.
8.
Gregarines are a diverse group of apicomplexan parasites with a conspicuous extracellular feeding stage, called a “trophozoite”, that infects the intestines and other body cavities of invertebrate hosts. Although the morphology of trophozoites is very diverse in gregarines as a whole, high degrees of intraspecific variation combined with relatively low degrees of interspecific variation make the delimitation of different species based on trophozoite morphology observed with light microscopy difficult. The coupling of molecular phylogenetic data with comparative morphology has shed considerable light onto the boundaries and interrelationships of different gregarine species. In this study, we isolated a novel marine gregarine from the hepatic region of a Pacific representative of the hemichordate Glossobalanus minutus, and report the first ultrastructural and molecular data from any gregarine infecting this distinctive group of hosts. Molecular phylogenetic analyses of an SSU rDNA sequence derived from two single‐cell isolates of this marine gregarine demonstrated a strong and unexpected affiliation with a clade of terrestrial gregarines (e.g. Gregarina). This molecular phylogenetic data combined with a comparison of the morphological features in previous reports of gregarines collected from Atlantic representatives of G. minutus justified the establishment of a new binomial for the new isolate, namely Caliculium glossobalani n. gen. et sp. The molecular phylogenetic analyses demonstrated a clade of terrestrial gregarines associated with a sequence acquired from a marine species, which suggest that different groups of terrestrial/freshwater gregarines evolved independently from marine ancestors.  相似文献   

9.
The ciliate genus Protocruzia is a highly confused group, which was formerly placed in the class Heterotrichea or Karyorelictea, and is according to the most recent system tentatively assigned to the class Spirotrichea. In the present study, the morphology, ciliary pattern, and molecular phylogeny of two poorly known species, Protocruzia tuzeti Villeneuve‐Brachon, 1940, and Protocruzia granulosa Kahl, 1933, isolated from coastal waters of China, were investigated. Protocruzia tuzeti differs from its congeners mainly in possessing 6 adoral membranelles, 8–11 somatic kineties, and postoral dikinetids. Protocruzia granulosa is characterized by its extremely slender body, three postoral kineties, and 13 or 14 somatic kineties. The morphogenesis of P. granulosa is similar to that of P. tuzeti, especially in the parakinetal mode of stomatogenesis and the reorganization of the parental paroral membrane; however, more than one somatic kinety joins in the formation of the oral primordium in P. granulosa. Phylogenetic analyses based on small subunit ribosomal RNA gene revealed that six Protocruzia species form a fully supported clade that does not belong to any ciliate class; therefore, our data support the establishment of the class Protocruziea Gao et al. (Sci. Rep., 6, 2016, 24874).  相似文献   

10.
11.
The morphology and infraciliature of a new ciliate, Metopus yantaiensis n. sp., discovered in coastal soil of northern China, were investigated. It is distinguished from its congeners by a combination of the following features: nuclear apparatus situated in the preoral dome; 18–21 somatic ciliary rows, of which three extend onto the preoral dome (dome kineties); three to five distinctly elongated caudal cilia, and 21–29 adoral polykinetids. The 18S rRNA genes of this new species and two congeners, Metopus contortus and Metopus hasei, were sequenced and phylogenetically analyzed. The new species is more closely related to M. hasei and the clevelandellids than to other congeners; both the genus Metopus and the order Metopida are not monophyletic. In addition, the digestion‐resistant bacteria in the cytoplasm of M. yantaiensis were identified, using a 16S rRNA gene clone library, sequencing, and fluorescence in situ hybridization. The detected intracellular bacteria are affiliated with Sphingomonadales, Rhizobiales, Rickettsiales (Alphaproteobacteria), Pseudomonas (Gammaproteobacteria), Rhodocyclales (Betaproteobacteria), Clostridiales (Firmicutes), and Flavobacteriales (Bacteroidetes).  相似文献   

12.
13.
There are over 100 species in the Order Clevelandellida distributed in many hosts. The majority is assigned to one of the five families, the Nyctotheridae. Our knowledge of clevelandellid genetic diversity is limited to species of Nyctotherus and Nyctotheroides. To increase our understanding of clevelandellid genetic diversity, species were isolated from intestines of the Australian wood‐feeding roach Panesthia cribrata Saussure, 1864 from August to October, 2008. Four morphospecies, similar to those reported in Java and Japan by Kidder [Parasitologica, 29 :163–205], were identified: Clevelandella constricta, Clevelandella nipponensis, Clevelandella parapanesthiae, and Clevelandella panesthiae. Small subunit rRNA gene sequences assigned all species to a “family” clade that was sister to the clade of species assigned to the Family Nyctotheridae in the Order Clevelandellida. Genetics and morphology were consistent for the first three Clevelandella species, but isolates assigned to C. panesthiae were assignable to three different genotypes, suggesting that this may be a cryptic species complex.  相似文献   

14.
Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well‐supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae.  相似文献   

15.
Peniculistoma mytili and Mytilophilus pacificae are placed in the pleuronematid scuticociliate family Peniculistomatidae based on morphology and ecological preference for the mantle cavity of mytiloid bivalves. We tested this placement with sequences of the small subunit rRNA (SSUrRNA) and cytochrome c oxidase subunit 1 (cox1) genes. These species are very closely related sister taxa with no distinct genetic difference in the SSUrRNA sequence but about 21% genetic difference for cox1, supporting their placement together but separation as distinct taxa. Using infection frequencies, M. pacificae, like its sister species P. mytili, does not interact with Ancistrum spp., co‐inhabitants of the mantle cavity. On the basis of these ecological similarities, the fossil record of host mussels, and features of morphology and stomatogenesis of these two ciliates, we argue that M. pacificae derived from a Peniculistoma‐like ancestor after divergence of the two host mussels. Our phylogenetic analyses of pleuronematid ciliates includes the SSUrRNA gene sequence of Sulcigera comosa, a Histiobalantium‐like ciliate from Lake Baikal. We conclude: (i) that the pleuronematids are a monophyletic group; (ii) that the genus Pleuronema is paraphyletic; and (iii) that S. comosa is a Histiobalantium species. We transfer S. comosa to Histiobalantium and propose a new combination Histiobalantium comosa n. comb.  相似文献   

16.
17.
18.
Seventy‐five diatom strains isolated from the Beaufort Sea (Canadian Arctic) in the summer of 2009 were characterized by light and electron microscopy (SEM and TEM), as well as 18S and 28S rRNA gene sequencing. These strains group into 20 genotypes and 17 morphotypes and are affiliated with the genera Arcocellulus, Attheya, Chaetoceros, Cylindrotheca, Eucampia, Nitzschia, Porosira, Pseudo‐nitzschia, Shionodiscus, Thalassiosira, and Synedropsis. Most of the species have a distribution confined to the northern/polar area. Chaetoceros neogracilis and Chaetoceros gelidus were the most represented taxa. Strains of C. neogracilis were morphologically similar and shared identical 18S rRNA gene sequences, but belonged to four distinct genetic clades based on 28S rRNA, ITS‐1 and ITS‐2 phylogenies. Secondary structure prediction revealed that these four clades differ in hemi‐compensatory base changes (HCBCs) in paired positions of the ITS‐2, suggesting their inability to interbreed. Reproductively isolated C. neogracilis genotypes can thus co‐occur in summer phytoplankton communities in the Beaufort Sea. C. neogracilis generally occurred as single cells but also formed short colonies. It is phylogenetically distinct from an Antarctic species, erroneously identified in some previous studies as C. neogracilis, but named here as Chaetoceros sp. This work provides taxonomically validated sequences for 20 Arctic diatom taxa, which will facilitate future metabarcoding studies on phytoplankton in this region.  相似文献   

19.
20.
The morphology and partial morphogenesis of two freshwater hypotrichous ciliates, Deviata brasiliensis Siqueira‐Castro et al., 2009 and Deviata rositae Küppers et al., 2007, isolated from southern China, were investigated using live observation and protargol staining. Our populations resemble the original ones in terms of their live characters and ciliary patterns. The main determinable morphogenetic features of Dbrasiliensis basically correspond with those of the type population. However, the origin of anlage V for either proter or opisthe is ambiguous: whether anlage V for the proter originates from parental frontoventral row 2 (the same as in the original population) or parental frontoventral row 3 (the same as in Deviata abbrevescens) or even de novo is not clear; the anlage V for the opisthe is possibly derived from frontoventral row 3 and further migrates to frontoventral row 2, like that in D. abbrevescens. In addition, the SSU rRNA gene was first sequenced for both species. Molecular phylogenetic analyses suggest that the genus Deviata is non‐monophyletic and has a close relationship with Perisincirra paucicirrata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号