首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the variability of marine biodiversity is a central issue in microbiology. Current observational programs are based on in situ studies, but their implementation at the global scale is particularly challenging, owing to the ocean extent, its temporal variability and the heterogeneity of the data sources on which compilations are built. Here, we explore the possibility of identifying phytoplanktonic biodiversity hotspots from satellite. We define a Shannon entropy index based on patchiness in ocean color bio-optical anomalies. This index provides a high resolution (1 degree) global coverage. It shows a relation to temperature and mid-latitude maxima in accordance with those previously evidenced in microbiological biodiversity model and observational studies. Regional maxima are in remarkable agreement with several known biodiversity hotspots for plankton organisms and even for higher levels of the marine trophic chain, as well as with some in situ planktonic biodiversity estimates (from Atlantic Meridional Transect cruise). These results encourage to explore marine biodiversity with a coordinated effort of the molecular, ecological and remote sensing communities.  相似文献   

2.
In many parts of the world, wildlife species congregate at ‘hotspot’ locations that offer feeding opportunities unmatched in the wider landscape. But to exploit those resource‐rich sites, animals must first locate them. In tropical Australia, predators and scavengers (especially dingos, scrub turkeys, snakes, and invasive toads) gather beneath large canopy‐emergent trees that house breeding colonies of metallic starlings (Aplonis metallica). Some wildlife species feed on fallen nestlings whereas others consume the rich insect fauna supported by bird detritus, or the other species attracted to those resources. Those congregations largely cease as soon as colony trees fall, suggesting that wildlife aggregations are responses to bird‐associated cues rather than to specific locations. To identify the proximate cues that elicit congregation of wildlife under such trees, we deployed sound cues (starling‐chatter) and two types of scent cues (soil from beneath a starling tree, and complete nests on broken branches). We recorded visitations by animals with camera‐traps. Starling‐chatter did not attract significant numbers of animals, but soil from beneath colony trees attracted many animals (mostly scrub turkeys). Complete nests attracted nest‐predators (dingos, snakes). Our experiments suggest that faunal aggregations beneath colony trees are driven by proximate responses to distinctive scent cues in the soil, especially for species that obtain their food from that bird‐fertilized substrate; but predators that feed directly on fallen nestlings key in specifically on that resource.  相似文献   

3.
Biodiversity hotspots are used widely to designate priority regions for conservation efforts. It is unknown, however, whether the current network of hotspots adequately represents globally threatened taxonomic diversity for whole plant and animal groups. We used a mammalian group traditionally neglected in terms of conservation efforts, the rodents, in order to test whether biodiversity hotspots match the current distribution of threatened taxa (genera and species). Significantly higher numbers of threatened rodent genera and species fell within biodiversity hotspots; nonetheless over 25% of the total threatened genera and species did not occur in any biodiversity hotspot. This was particularly true for the Australian region, where 100% of the threatened genera and species fell outside biodiversity hotspots, with many threatened taxa found in Papua-New Guinea. We suggest to officially including Papua New Guinea among biodiversity hotspots for rodents, and also the steppic/semidesert areas of central Asia.  相似文献   

4.
5.
Brand AH  Livesey FJ 《Neuron》2011,70(4):719-729
Many of the regulatory mechanisms controlling neural stem cell behavior are proving to be conserved between organisms as diverse as worms and man. Common principles are emerging with respect to the regulation of neural stem cell division and the specification of distinct stem and progenitor cell types. Great progress has been made in recent years in identifying the cellular mechanisms underpinning these processes, thanks in large part to the cross-fertilization of research on different model systems. We review here recent findings that highlight hitherto unappreciated similarities in the cell and molecular biology of neural stem cell self-renewal and differentiation between invertebrates and vertebrates. As well as underscoring the possible conservation of stem cell mechanisms across phyla, these similarities are proving to be practically useful in studying neural stem cell biology in health and disease.  相似文献   

6.
7.
Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon‐based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above‐ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red‐listed species. We found that increasing fragment size has a positive relationship with above‐ground carbon stock and with abundance of IUCN Red‐listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red‐listed species abundance. These resulted in positive congruence between carbon stocks and Red‐listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer‐grained assessments in fragmented landscapes rather than using averaged coarse‐grained cells.  相似文献   

8.
Parasitic plants as facilitators: more Dryad than Dracula?   总被引:1,自引:1,他引:0  
  相似文献   

9.
Ribosome-inactivating proteins from plants: more than RNA N-glycosidases?   总被引:18,自引:0,他引:18  
Many plants contain proteins that are capable of inactivating ribosomes and accordingly are called ribosome-inactivating proteins or RIPs. These typical plant proteins receive a lot of attention in biological and biomedical research because of their unique biological activities toward animal and human cells. In addition, evidence is accumulating that some RIPs play a role in plant defense and hence can be exploited in plant protection. To understand the mode of action of RIPs and to optimize their medical and therapeutical applications and their use as antiviral compounds in plant protection, intensive efforts have been made to unravel the enzymatic activities of RIPs and provide a structural basis for these activities. Though marked progress has been made during the last decade, the enzymatic activity of RIPs has become a controversial issue because of the concept that RIPs possess, in addition to their classical RNA N-glycosidase and polynucleotide:adenosine glycosidase activity, other unrelated enzymatic activities. Moreover, the presumed novel enzymatic activities, especially those related to diverse nuclease activities, are believed to play an important role in various biological activities of RIPs. However, both the novel enzymatic activities and their presumed involvement in the biological activities of RIPs have been questioned because there is evidence that the activities observed are due to contaminating enzymes. We offer a critical review of the pros and cons of the putative novel enzymatic activities of RIPs. Based on the available data, it is suggested that there is little conclusive evidence in support of the presumed activities and that in the past too little attention has been given to the purity of the RIP preparation. The antiviral activity and mode of action of RIPs in plants are discussed in view of their classical and presumed novel enzymatic activities.  相似文献   

10.
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta‐analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above‐mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: = 0.051; increased precipitation: = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (= 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.  相似文献   

11.
12.
Are microorganisms more effective than plants at competing for nitrogen?   总被引:18,自引:0,他引:18  
Plant scientists have long debated whether plants or microorganisms are the superior competitor for nitrogen in terrestrial ecosystems. Microorganisms have traditionally been viewed as the victors but recent evidence that plants can take up organic nitrogen compounds intact and can successfully acquire N from organic patches in soil raises the question anew. We argue that the key determinants of 'success' in nitrogen competition are spatial differences in nitrogen availability and in root and microbial distributions, together with temporal differences in microbial and root turnover. Consequently, it is not possible to discuss plant-microorganism competition without taking into account this spatiotemporal context.  相似文献   

13.
14.
Clonal traits such as clonal integration and storage functions of rhizomes or stolons may provide clonal plants with additional advantages against grazing over non-clonal plants. Here, we hypothesize that clonal species have a larger capacity for compensatory growth than co-occurring non-clonal species. In inland dunes in northern China, individual plants of two rhizomatous clonal species (Bromus ircutensis and Psammochloa villosa) and two non-clonal ones (Artemisia intramongolica and Astragalus melilotoides) were subjected to 0% (control), 50% (moderate) and 90% (heavy) shoot removal. Compared with control, heavy clipping greatly increased the relative growth rate in Bromus and Psammochloa, but decreased that in Artemisia and Astragalus. Heavy clipping affected above-ground dry weight and the number of modules more negatively in Artemisia and Astragalus than in Bromus and Psammochloa. These results support the hypothesis and suggest that clonal species are more tolerant to grazing than co-occurring non-clonal species in inland dunes.  相似文献   

15.
Forest and savanna biomes dominate the tropics, yet factors controlling their distribution remain poorly understood. Climate is clearly important, but extensive savannas in some high rainfall areas suggest a decoupling of climate and vegetation. In some situations edaphic factors are important, with forest often associated with high nutrient availability. Fire also plays a key role in limiting forest, with fire exclusion often causing a switch from savanna to forest. These observations can be captured by a broad conceptual model with two components: (1) forest and savanna are alternative stable states, maintained by tree cover-fire feedbacks, (2) the interaction between tree growth rates and fire frequency limits forest development; any factor that increases growth (e.g. elevated availability of water, nutrients, CO(2)), or decreases fire frequency, will favour canopy closure. This model is consistent with the range of environmental variables correlated with forest distribution, and with the current trend of forest expansion, likely driven by increasing CO(2) concentrations. Resolving the drivers of forest and savanna distribution has moved beyond simple correlative studies that are unlikely to establish ultimate causation. Experiments using Dynamic Global Vegetation Models, parameterised with measurements from each continent, provide an important tool for understanding the controls of these systems.  相似文献   

16.
Statistically rigorous methods for summarizing and reporting trends in the intactness of biodiversity are a key element of effective biodiversity monitoring programs. There are four major approaches for translating complex monitoring data into easily communicated summary statistics: (1) traditional diversity indices such as species richness and Simpson's diversity, (2) species intactness indices based on occurrence, (3) species intactness indices based on abundance, and (4) multivariate community indices. We use simulated data to evaluate the effectiveness of 13 indices from these four categories based on statistical robustness, sensitivity to errors and noise in the data, ecological relevance, and ease of communication. We show that indices that calculate species intactness using equations like Buckland's arithmetic mean index are the most effective for use in large-scale biodiversity intactness monitoring programs. Traditional diversity indices are unsuitable for monitoring of biodiversity intactness, and multivariate indices can be highly sensitive to errors and noise in the data. Finally, we provide guidelines for the application of these indices in biodiversity intactness monitoring.  相似文献   

17.
There is a common and long-standing belief that tropical butterflies are more striking in their coloration than those of cooler climates. It has been suggested that this is due to more intense biotic selection or mate selection in the tropics. We tested whether there were differences in coloration by examining the dorsal surface color properties of male butterflies from three regions of the western hemisphere: the Jatun-Satcha Reserve in lowland Ecuador (tropical), the state of Florida, USA (subtropical) and the state of Maine, USA (cool temperate). We digitally photographed the dorsal wing and body surface of male butterfly specimens from Maine, Florida, and Ecuador. For each photograph, we analyzed the mean and variation for the color-parameters that are thought to be related to colorfulness; namely Hue, saturation and intensity. Overall, the Ecuadorian sample exhibited more varied intensity, saturation, and Hue compared to the other regions. These results suggest a more complex assemblage of colors and patterns regionally and on a butterfly-by-butterfly basis in the tropics. The greater complexity of colors within each butterfly in our Ecuadorian sample suggests that tropical butterflies are indeed more ‘colorful’, at least by some measures. Possible reasons for this include stronger predation pressure selecting for aposematism, greater species diversity selecting for camouflage or warning coloration against potential predators, and easier recognition of potential mates in a species rich environment.  相似文献   

18.
Have we overstated the tropical biodiversity crisis?   总被引:4,自引:0,他引:4  
Tropical forests are the most biologically diverse and ecologically complex of terrestrial ecosystems, and are disappearing at alarming rates. It has long been suggested that rapid forest loss and degradation in the tropics, if unabated, could ultimately precipitate a wave of species extinctions, perhaps comparable to mass extinction events in the geological history of the Earth. However, a vigorous debate has erupted following a study by Wright and Muller-Landau that challenges the notion of large-scale tropical extinctions, at least over the next century. Here, I summarize this controversy and describe how the debate is stimulating a serious examination of the causes and biological consequences of future tropical deforestation.  相似文献   

19.
Agroforestry: a refuge for tropical biodiversity?   总被引:1,自引:0,他引:1  
As rates of deforestation continue to rise in many parts of the tropics, the international conservation community is faced with the challenge of finding approaches which can reduce deforestation and provide rural livelihoods in addition to conserving biodiversity. Much of modern-day conservation is motivated by a desire to conserve 'pristine nature' in protected areas, while there is growing recognition of the long-term human involvement in forest dynamics and of the importance of conservation outside protected areas. Agroforestry -- intentional management of shade trees with agricultural crops -- has the potential for providing habitats outside formally protected land, connecting nature reserves and alleviating resource-use pressure on conservation areas. Here we examine the role of agroforestry systems in maintaining species diversity and conclude that these systems can play an important role in biodiversity conservation in human-dominated landscapes.  相似文献   

20.
The increase in richness of species and higher taxa going from higher to lower latitudes is one of the most studied global biogeographical patterns. Latitudinal trends in the interactions between species have, in contrast, hardly been studied at all, probably because recording interactions is much less straightforward than counting species. We have assembled two independent data sets which suggest that plant-pollinator interactions are not more ecologically specialised in the tropics compared to temperate latitudes. This is in contrast to a prevailing view that tropical ecological interactions tend towards higher specificity than their temperate counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号