首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Leishmaniasis is one of the most diverse and complex of all vector-borne diseases worldwide. It is caused by parasites of the genus Leishmania, obligate intramacrophage protists characterised by diversity and complexity. Its most severe form is visceral leishmaniasis (VL), a systemic disease that is fatal if left untreated. In Latin America VL is caused by Leishmania infantum chagasi and transmitted by Lutzomyia longipalpis. This phlebotomine sandfly is only found in the New World, from Mexico to Argentina. In South America, migration and urbanisation have largely contributed to the increase of VL as a public health problem. Moreover, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases.

Methodology/Principal Findings

An inventory of the microbiota associated with insect vectors, especially of wild specimens, would aid in the development of novel strategies for controlling insect vectors. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. Previous studies on wild and laboratory reared female Lu. longipalpis have described gut bacteria using standard bacteriological methods. In this study, total RNA was extracted from the insects and submitted to high-throughput pyrosequencing. The analysis revealed the presence of sequences from bacteria, fungi, protist parasites, plants and metazoans.

Conclusions/Significance

This is the first time an unbiased and comprehensive metagenomic approach has been used to survey taxa associated with an infectious disease vector. The identification of gregarines suggested they are a possible efficient control method under natural conditions. Ongoing studies are determining the significance of the associated taxa found in this study in a greater number of adult male and female Lu. longipalpis samples from endemic and non-endemic locations. A particular emphasis is being given to those species involved in the biological control of this vector and to the etiologic agents of animal and plant diseases.  相似文献   

3.
4.
In 2004, the urban presence of Lutzomyia longipalpis was recorded for the first time in Formosa province. In 2006, the first autochthonous case of human urban visceral leishmaniasis (VL) was recorded in Misiones in the presence of the vector, along with some canine VL cases. After this first case, the vector began to spread primarily in northeast Argentina. Between 2008-2011, three human VL cases were reported in Salta province, but the presence of Lu. longipalpis was not recorded. Captures of Phlebotominae were made in Tartagal, Salta, in 2013, and the presence of Lu. longipalpis was first recorded in northwest Argentina at that time. Systematic sampling is recommended to observe the distribution and dispersion patterns of Lu. longipalpis and consider the risk of VL transmission in the region.  相似文献   

5.
Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-γ at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG2 antibody levels and significant IFN-γ production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-γ and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response.  相似文献   

6.
7.
This study aimed to analyse changes in the spatial distribution of Lutzomyia longipalpis in Posadas, an urban area located in northeastern Argentina. Data were obtained during the summer of 2007 and 2009 through two entomological surveys of peridomiciles distributed around the city. The abundance distribution pattern for 2009 was computed and compared with the previous pattern obtained in 2007, when the first human visceral leishmaniasis cases were reported in the city. Vector abundance was also examined in relation to micro and macrohabitat characteristics. In 2007 and 2009, Lu. longipalpis was distributed among 41.5% and 31% of the households in the study area, respectively. In both years, the abundance rates at most of the trapping sites were below 30 Lu. longipalpis per trap per night; however, for areas exhibiting 30-60 Lu. longipalpis and more than 60 Lu. longipalpis, the areas increased in both size and number from 2007-2009. Lu. longipalpis was more abundant in areas with a higher tree and bush cover (a macrohabitat characteristic) and in peridomiciles with accumulated unused material (a microhabitat characteristic). These results will help to prioritise and focus control efforts by defining which peridomiciles display a potentially high abundance of Lu. longipalpis.  相似文献   

8.
To understand the geographic distribution of visceral leishmaniasis (VL) in the state of Mato Grosso do Sul (MS), Brazil, both the climatic niches of Lutzomyia longipalpis and VL cases were analysed. Distributional data were obtained from 55 of the 79 counties of MS between 2003-2012. Ecological niche models (ENM) of Lu. longipalpis and VL cases were produced using the maximum entropy algorithm based on eight climatic variables. Lu. longipalpis showed a wide distribution in MS. The highest climatic suitability for Lu. longipalpis was observed in southern MS. Temperature seasonality and annual mean precipitation were the variables that most influenced these models. Two areas of high climatic suitability for the occurrence of VL cases were predicted: one near Aquidauana and another encompassing several municipalities in the southeast region of MS. As expected, a large overlap between the models for Lu. longipalpis and VL cases was detected. Northern and northwestern areas of MS were suitable for the occurrence of cases, but did not show high climatic suitability for Lu. longipalpis . ENM of vectors and human cases provided a greater understanding of the geographic distribution of VL in MS, which can be applied to the development of future surveillance strategies.  相似文献   

9.
An eight-year old boy from Posadas (27 masculine 23'S, 55 masculine 54'W) was diagnosed with visceral leishmaniasis (VL) during 2006. Lutzomyia longipalpis was discovered in the backyard of his house, while the spread of canine visceral leishmaniasis was confirmed in Posadas. This is the southernmost report of a VL transmission focus and the first in Argentina.  相似文献   

10.

Background

Leishmania is transmitted by female sand flies and deposited together with saliva, which contains a vast repertoire of pharmacologically active molecules that contribute to the establishment of the infection. The exposure to vector saliva induces an immune response against its components that can be used as a marker of exposure to the vector. Performing large-scale serological studies to detect vector exposure has been limited by the difficulty in obtaining sand fly saliva. Here, we validate the use of two sand fly salivary recombinant proteins as markers for vector exposure.

Methodology/principal findings

ELISA was used to screen human sera, collected in an area endemic for visceral leishmaniasis, against the salivary gland sonicate (SGS) or two recombinant proteins (rLJM11 and rLJM17) from Lutzomyia longipalpis saliva. Antibody levels before and after SGS seroconversion (n = 26) were compared using the Wilcoxon signed rank paired test. Human sera from an area endemic for VL which recognize Lu. longipalpis saliva in ELISA also recognize a combination of rLJM17 and rLJM11. We then extended the analysis to include 40 sera from individuals who were seropositive and 40 seronegative to Lu. longipalpis SGS. Each recombinant protein was able to detect anti-saliva seroconversion, whereas the two proteins combined increased the detection significantly. Additionally, we evaluated the specificity of the anti-Lu. longipalpis response by testing 40 sera positive to Lutzomyia intermedia SGS, and very limited (2/40) cross-reactivity was observed. Receiver-operator characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for the prediction of anti-SGS positivity. These ROC curves evidenced the superior performance of rLJM17+rLJM11. Predicted threshold levels were confirmed for rLJM17+rLJM11 using a large panel of 1,077 serum samples.

Conclusion

Our results show the possibility of substituting Lu. longipalpis SGS for two recombinant proteins, LJM17 and LJM11, in order to probe for vector exposure in individuals residing in endemic areas.  相似文献   

11.
The performance of two light‐emitting diode traps with white and black light for capturing phlebotomine sand flies, developed by the Argentinean Leishmaniasis Research Network (REDILA‐WL and REDILA‐BL traps), were compared with the traditional CDC incandescent light trap. Entomological data were obtained from six sand fly surveys conducted in Argentina in different environments. Data analyses were conducted for the presence and the abundance of Lutzomyia longipalpis, Migonemyia migonei, and Nyssomyia whitmani (106 sites). No differences were found in presence/absence among the three types of traps for all sand fly species (p>0.05). The collection mean of Lu. longipalpis from the REDILA‐BL didn´t differ from the CDC trap means, nor were differences seen between the REDILA‐WL and the CDC trap collection means (p>0.05), but collections were larger from the REDILA‐BL trap compared to the REDILA‐WL trap (p<0.05). For Mg. migonei and Ny. whitmani, no differences were found among the three types of traps in the number of individuals captured (p>0.05). These results suggest that both REDILA traps could be used as an alternative capture tool to the original CDC trap for surveillance of these species, and that the REDILA‐BL will also allow a comparable estimation of the abundance of these flies to the CDC light trap captures. In addition, the REDILA‐BL has better performance than the REDILA‐WL, at least for Lu. longipalpis.  相似文献   

12.
The life cycle of vectors and the reservoirs that participate in the chain of infectious diseases have a strong relationship with the environmental dynamics of the ecosystems in which they live. Oscillations in population abundance and seasonality of insects can be explained by factors inherent in each region and time period. Therefore, knowledge of the relationship and influence of environmental factors on the population of Lutzomyia longipalpis is necessary because of the high incidence of visceral leishmaniasis (VL) in Brazil. This study evaluates the influence of abiotic variables on the population density and seasonal behavior of L. longipalpis in an urban endemic area of VL in Brazil. The sand fly captures were performed every two months between November, 2009 and November, 2010 in the peridomicile of 13 randomly selected residences. We captured 1,367 specimens of L. longipalpis, and the ratio of male/female flies was 2.86:1. The comparison of the total male specimens in the two seasons showed a statistical difference in the wet season, but there was no significant difference when considering the total females. With respect to climatic variables, a significant negative association was observed only with wind speed. During periods of high wind speeds, the population density of this vector decreased. The presence of L. longipalpis was found in all months of the study with bimodal behavior and population peaks during the wet season.  相似文献   

13.
In this study, a genotypification of Leishmania was performed using polimerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing techniques to identify species of Leishmania parasites in phlebotomine sand flies and dogs naturally infected. Between January-February of 2009, CDC light traps were used to collect insect samples from 13 capture sites in the municipality of Posadas, which is located in the province of Misiones of Argentina. Sand flies identified as Lutzomyia longipalpis were grouped into 28 separate pools for molecular biological analysis. Canine samples were taken from lymph node aspirates of two symptomatic stray animals that had been positively diagnosed with canine visceral leishmaniasis. One vector pool of 10 sand flies (1 out of the 28 pools tested) and both of the canine samples tested positively for Leishmania infantum by PCR and RFLP analysis. PCR products were confirmed by sequencing and showed a maximum identity with L. infantum. Given that infection was detected in one out of the 28 pools and that at least one infected insect was infected, it was possible to infer an infection rate at least of 0.47% for Lu. longipalpis among the analyzed samples. These results contribute to incriminate Lu. longipalpis as the vector of L. infantum in the municipality of Posadas, where cases of the disease in humans and dogs have been reported since 2005.  相似文献   

14.
Background: The present study was carried out in the rural and urban area of Diamantina/Minas Gerais (MG), an endemic municipality for visceral leishmaniasis (VL) in Brazil. Methods: Patient notification records, canine prevalence, and phlebotomine fauna were evaluated. Results: In the period from 2016 to 2018, eight human cases were confirmed, with three deaths, predominantly in males. In the same period, a total of 1,388 dogs resided in the rural and urban area of the municipality were submitted to the DPP® and ELISA, with a percentage of confirmed canine cases of 29.9% and 29.4%, respectively. The entomological study conducted in the municipality revealed the presence of 10 species of sand flies, with a predominance of Lutzomyia longipalpis (55.75%), mainly in the rural area. Conclusions: Unlike what is happening in urban centers, the results of this study suggest that the VL in Diamantina is in the process of urbanization, given the high percentage of confirmed canine cases and the high density of Lu. longipalpis in the rural area of the municipality. These risk factors warn about the need for continuous surveillance and the need to control actions of VL in this area.  相似文献   

15.
Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases.  相似文献   

16.
Brazil is one of the most important endemic areas for leishmaniasis worldwide. Protected areas that are tourist attractions likely present an important risk of transmission of cutaneous leishmaniasis (CL). Furthermore, with the geographical expansion of visceral leishmaniasis (VL), several studies have recorded the occurrence of its vector, Lutzomyia longipalpis, and cases of human and canine VL in such tourist areas. The Parque Estadual do Sumidouro is an environmentally protected area located in the Brazilian Cerrado biome and in an important area endemic for leishmaniasis in the state of Minas Gerais. The purpose of this study was to monitor the sand fly fauna in areas of tourist activity in the park. Sampling was performed every month, from September 2011 to August 2013, using CDC light traps at six sites of differing environmental characteristics. Sampled specimens were identified following Galati (2003), and females were submitted to molecular techniques for the detection and identification of Leishmania DNA. A total of 4,675 sand fly specimens of 25 species belonging to nine genera were collected. The most abundant species were Micropygomyia quinquefer, Lutzomyia renei and Pintomyia pessoai, although only Pi. pessoai is implicated in the transmission of Leishmania braziliensis. The species accumulation curve reached saturation on the 16th sampling event. Species richness, diversity and evenness differed among the sampled areas. The seasonal curve was not determined by a single unique species, and no single species was the most abundant in all environments sampled. The main vector of Leishmania (Leishmania) infantum, Lutzomyia longipalpis, accounted for only 5.35% of the specimens collected. Proven or suspected vectors of Leishmania (Viannia) braziliensis were recorded, and one female of the cortellezzii complex tested positive for Le. braziliensis DNA. Even with a low infection rate (0.62%), these data indicate the circulation of the parasite and reinforce the need for entomological and epidemiological surveillance in the park and its surroundings.  相似文献   

17.
《Journal of Asia》2023,26(1):102023
Endosymbionts have gained prominence as a potential tool for biological control strategies in reducing vector-borne diseases. This study aimed to evaluate the presence of Arsenophonus, Spiroplasma, and Rickettsia endosymbionts in wild specimens of phlebotomine sand flies, as well as in culicids collected in different regions of Colombia. Analyses were conducted through conventional PCR, Sanger sequencing of the 16S rRNA gene, and phylogenetic analyses. Individuals from among 946 phlebotomine sand flies and 143 mosquitoes were selected for taxonomic identification confirmed through the analysis of the cytochrome oxidase subunit I gene sequences. Results showed the presence of Arsenophonus bacteria in samples of Lutzomyia longipalpis, Psychodopygus panamensis, and Pintomyia evansi. Arsenophonus sequences associated with Lu. longipalpis and Ps. panamensis are phylogenetically located near to sequences of louse flies, with K2P genetic distances of 0.006. In contrast, sequences obtained from Pi. evansi are phylogenetically located near Arsenophonus nasoniae (K2P 0.001–0.014). Other sequences of endosymbionts similar to Arsenophonus with high K2P genetic distances (0.056–0.097), when compared to different reference strains of this endosymbiont, were also found in other samples of Lu. longipalpis and Ae. aegypti. To the best of our knowledge, this is the first successful attempt to detect and elucidate the phylogenetic relationship of Arsenophonus in phlebotomine sand flies, yet its role within these insect vectors remains to be fully determined; therefore, the importance of entomological surveys that help better understand its behavior and potential use as a control agent is required to enable the proactive reduction of sand fly populations.  相似文献   

18.
Visceral leishmaniasis (VL) is one of the most prevalent parasitic diseases worldwide. In 2019, 97% of the total numbers of cases in Latin America were reported in Brazil. In São Paulo state, currently 17.6% of infected individuals live in the western region. To study this neglected disease on a regional scale, we describe the spread of VL in 45 municipalities of the Regional Network for Health Assistance11(RNHA11). Environmental, human VL (HVL), and canine VL (CVL) cases, Human Development Index, and Lutzomyia longipalpis databases were obtained from public agencies. Global Moran’s I index and local indicators of spatial association (LISA) statistics were used to identify spatial autocorrelation and to generate maps for the identification of VL clusters. On a local scale, we determined the spread of VL in the city of Teodoro Sampaio, part of the Pontal of Paranapanema. In Teodoro Sampaio, monthly peri-domicile sand fly collection; ELISA, IFAT and Rapid Test serological CVL; and ELISA HVL serum surveys were carried out. In RNHA11 from 2000 to 2018, Lu. longipalpis was found in 77.8%, CVL in 69%, and HVL in 42.2% of the 45 municipalities, and 537 individuals were notified with HVL. Dispersion occurred from the epicenter in the north to Teodoro Sampaio, in the south, where Lu. longipalpis and CVL were found in 2010, HVL in 2018, and critical hotspots of CVL were found in the periphery. Moran’s Global Index showed a weak but statistically significant spatial autocorrelation related to cases of CVL (I = 0.2572), and 11 municipalities were identified as priority areas for implementing surveillance and control actions. In RNHA11, a complex array of socioeconomic and environmental factors may be fueling the epidemic and sustaining endemic transmission of VL, adding to the study of a neglected disease in a region of São Paulo, Brazil.  相似文献   

19.
The spatiotemporal population dynamics of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) were evaluated in a city in Argentina in which visceral leishmaniasis is endemic. Over 14 sampling sessions, 5244 specimens of five species of Phlebotominae (Diptera: Psychodidae) were captured, of which 2458 (46.87%) specimens were L. longipalpis. Generalized linear models were constructed to evaluate the associations between L. longipalpis abundance and explanatory variables derived from satellite images. The spatial variable ‘stratum’ and the temporal variable ‘season’ were also included in the models. Three variables were found to have significant associations: the normalized difference vegetation index; land surface temperature, and low urban coverage. The last two of these were associated with L. longipalpis abundance only during summer and winter, respectively. This variation between seasons supports the development of models that include temporal variables because models of distributions of the abundance of a species may show different critical variables according to the climatic period of the year. Abundance decreased gradually towards the downtown area, which suggests that L. longipalpis responds to a meta‐population structure, in which rural–periurban source populations that persist over time may colonize adjacent areas. This information allows for a spatiotemporal stratification of risk, which provides public health authorities with a valuable tool to help optimize prevention measures against visceral leishmaniasis.  相似文献   

20.
Our objective was to study and evaluate the richness and diversity of Phlebotominae fauna in the Duas Bocas Biological Reserve (DBBR) in the state of Espírito Santo, in southeastern Brazil. Sand fly collections were carried out during four consecutive nights each month between August 2007 and July 2008 at DBBR by using CDC automatic light traps and an illuminated Shannon trap. Specific richness (S) and Shannon diversity index (H) was calculated for each trap. We collected 18,868 sand flies belonging to 29 species and 13 genera. Nyssomyia yuilli yuilli was the most abundant species followed by Psychodopygus ayrozai, Ps. hirsutus, Psathyromyia pascalei, and Ps. matosi. We recorded Brumptomyia cardosoi, Br. troglodytes, and Ps. geniculatus for the first time in the state of Espírito Santo. We discuss the differences in diversity and richness of the sand flies in both traps and in relation to other Brazilian localities and biomes. We also discuss the possibility of wild transmission of Leishmania in the DBBR and the influence of the sand fly species in leishmaniasis transmission to the adjacent areas of the reserve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号