首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the results of the first dynamic labeling experiment with regenerating spines of sea urchins Paracentrotus lividus using the stable isotope 26Mg and NanoSIMS high-resolution isotopic imaging, which provide a direct information about the growth process. Growing spines were labeled twice (for 72 and 24 h, respectively) by increasing the abundance of 26Mg in seawater. The incorporation of 26Mg into the growing spines was subsequently imaged with the NanoSIMS ion microprobe. Stereom trabeculae initially grow as conical micro-spines, which form within less than 1 day. These micro-spines fuse together by lateral outgrowths and form a thin, open meshwork (inner stereom), which is subsequently reinforced by addition of layered thickening deposits (outer stereom). The (longitudinal) growth rate of the inner stereom is ca. 125 μm/day. A single (ca. 1 μm) thickening layer in the stereom trabeculae is deposited during 24 h. The thickening process is contemporaneous with the formation micro-spines and involves both longitudinal trabeculae and transverse bridges to a similar degree. Furthermore, the skeleton-forming cells remain active in the previously formed open stereom for at least 10 days, and do not migrate upwards until the end of the thickening process. The experimental capability presented here provides a new way to obtain detailed information about the skeleton formation of a multitude of marine, calcite producing organisms.  相似文献   

2.
There is great concern over the future effects of ocean acidification on marine organisms, especially for skeletal calcification, yet little is known of natural variation in skeleton size and composition across the globe, and this is a prerequisite for identifying factors currently controlling skeleton mass and thickness. Here, taxonomically controlled latitudinal variations in shell morphology and composition were investigated in bivalve and gastropod molluscs, brachiopods, and echinoids. Total inorganic content, a proxy for skeletal CaCO3, decreased with latitude, decreasing seawater temperature, and decreasing seawater carbonate saturation state (for CaCO3 as calcite (Ωcal)) in all taxa. Shell mass decreased with latitude in molluscs and shell inorganic content decreased with latitude in buccinid gastropods. Shell thickness decreased with latitude in buccinid gastropods (excepting the Australian temperate buccinid) and echinoids, but not brachiopods and laternulid clams. In the latter, the polar species had the thickest shell. There was no latitudinal trend in shell thickness within brachiopods. The variation in trends in shell thickness by taxon suggests that in some circumstances ecological factors may override latitudinal trends. Latitudinal gradients may produce effects similar to those of future CO2‐driven ocean acidification on CaCO3 saturation state. Responses to latitudinal trends in temperature and saturation state may therefore be useful in informing predictions of organism responses to ocean acidification over long‐term adaptive timescales.  相似文献   

3.
Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high‐magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid–base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid–base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid–base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid–base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid–base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.  相似文献   

4.
Nakamura M  Ohki S  Suzuki A  Sakai K 《PloS one》2011,6(1):e14521
Ocean acidification may negatively impact the early life stages of some marine invertebrates including corals. Although reduced growth of juvenile corals in acidified seawater has been reported, coral larvae have been reported to demonstrate some level of tolerance to reduced pH. We hypothesize that the observed tolerance of coral larvae to low pH may be partly explained by reduced metabolic rates in acidified seawater because both calcifying and non-calcifying marine invertebrates could show metabolic depression under reduced pH in order to enhance their survival. In this study, after 3-d and 7-d exposure to three different pH levels (8.0, 7.6, and 7.3), we found that the oxygen consumption of Acropora digitifera larvae tended to be suppressed with reduced pH, although a statistically significant difference was not observed between pH conditions. Larval metamorphosis was also observed, confirming that successful recruitment is impaired when metamorphosis is disrupted, despite larval survival. Results also showed that the metamorphosis rate significantly decreased under acidified seawater conditions after both short (2 h) and long (7 d) term exposure. These results imply that acidified seawater impacts larval physiology, suggesting that suppressed metabolism and metamorphosis may alter the dispersal potential of larvae and subsequently reduce the resilience of coral communities in the near future as the ocean pH decreases.  相似文献   

5.
We investigated the effects of ocean acidification on juvenile clams Ruditapes decussatus (average shell length 10.24 mm) in a controlled CO2 perturbation experiment. The carbonate chemistry of seawater was manipulated by diffusing pure CO2, to attain two reduced pH levels (by −0.4 and −0.7 pH units), which were compared to unmanipulated seawater. After 75 days we found no differences among pH treatments in terms of net calcification, size or weight of the clams. The naturally elevated total alkalinity of local seawater probably contributed to buffer the effects of increased pCO2 and reduced pH. Marine organisms may, therefore, show diverse responses to ocean acidification at local scales, particularly in coastal, estuarine and transitional waters, where the physical-chemical characteristics of seawater are most variable. Mortality was significantly reduced in the acidified treatments. This trend was probably related to the occurrence of spontaneous spawning events in the control and intermediate acidification treatments. Spawning, which was unexpected due to the small size of the clams, was not observed for the pH −0.7 treatment, suggesting that the increased survival under acidified conditions may have been associated with a delay in the reproductive cycle of the clams. Future research about the impacts of ocean acidification on marine biodiversity should be extended to other types of biological and ecological processes, apart from biological calcification.  相似文献   

6.
The skeleton of spines and tests of the species of sea urchins Strongylocentrotus intermedius, Mesocentrotus nudus, Scaphechinus mirabilis, and Echinocardium cordatum from the Sea of Japan is composed of a spongy stereom, consisting of calcite with a high content of magnesium. It was found that the tests and spines of the skeletons of sea urchins are composed of calcium–organic composite materials inlaid with other metals: Mg, Fe, Zn, and Rb. In the four species of sea urchins studied, the strength and other mechanical properties of the tests and spines differ and depend on the chemical composition and structural organization of their components. It was shown that the content of volatile substances correlates with their fragility or elasticity. It is revealed that the chemical composition of the tests of two species of the spherical sea urchins S. intermedius and M. nudus indicates significant differences between these two species of sea urchins.  相似文献   

7.
Increased atmospheric CO2 emissions are inducing changes in seawater carbon chemistry, lowering its pH, decreasing carbonate ion availability and reducing calcium carbonate saturation state. This phenomenon, known as ocean acidification, is happening at a faster rate in cold regions, i.e., polar and sub-polar waters. The larval development of Arbacia dufresnei from a sub-Antarctic population was studied at high (8.0), medium (7.7) and low (7.4) pH waters. The results show that the offspring from sub-Antarctic populations of A. dufresnei are susceptible to a development delay at low pH, with no significant increase in abnormal forms. Larvae were isometric between pH treatments. Even at calcium carbonate (CaCO3) saturation states (of both calcite and aragonite, used as proxies of the magnesium calcite) <1, skeleton deposition occurred. Polar and sub-polar sea urchin larvae can show a certain degree of resilience to acidification, also emphasizing A. dufresnei potential to poleward migrate and further colonize southern regions.  相似文献   

8.
Ocean acidification describes changes in the carbonate chemistry of the ocean due to the increased absorption of anthropogenically released CO2. Experiments to elucidate the biological effects of ocean acidification on algae are not straightforward because when pH is altered, the carbon speciation in seawater is altered, which has implications for photosynthesis and, for calcifying algae, calcification. Furthermore, photosynthesis, respiration, and calcification will themselves alter the pH of the seawater medium. In this review, algal physiologists and seawater carbonate chemists combine their knowledge to provide the fundamental information on carbon physiology and seawater carbonate chemistry required to comprehend the complexities of how ocean acidification might affect algae metabolism. A wide range in responses of algae to ocean acidification has been observed, which may be explained by differences in algal physiology, timescales of the responses measured, study duration, and the method employed to alter pH. Two methods have been widely used in a range of experimental systems: CO2 bubbling and HCl/NaOH additions. These methods affect the speciation of carbonate ions in the culture medium differently; we discuss how this could influence the biological responses of algae and suggest a third method based on HCl/NaHCO3 additions. We then discuss eight key points that should be considered prior to setting up experiments, including which method of manipulating pH to choose, monitoring during experiments, techniques for adding acidified seawater, biological side effects, and other environmental factors. Finally, we consider incubation timescales and prior conditioning of algae in terms of regulation, acclimation, and adaptation to ocean acidification.  相似文献   

9.
Irie T  Bessho K  Findlay HS  Calosi P 《PloS one》2010,5(10):e13436
Ocean acidification is potentially one of the greatest threats to marine ecosystems and global carbon cycling. Amongst calcifying organisms, coccolithophores have received special attention because their calcite precipitation plays a significant role in alkalinity flux to the deep ocean (i.e., inorganic carbon pump). Currently, empirical effort is devoted to evaluating the plastic responses to acidification, but evolutionary considerations are missing from this approach. We thus constructed an optimality model to evaluate the evolutionary response of coccolithophorid life history, assuming that their exoskeleton (coccolith) serves to reduce the instantaneous mortality rates. Our model predicted that natural selection favors constructing more heavily calcified exoskeleton in response to increased acidification-driven costs. This counter-intuitive response occurs because the fitness benefit of choosing a better-defended, slower growth strategy in more acidic conditions, outweighs that of accelerating the cell cycle, as this occurs by producing less calcified exoskeleton. Contrary to the widely held belief, the evolutionarily optimized population can precipitate larger amounts of CaCO(3) during the bloom in more acidified seawater, depending on parameter values. These findings suggest that ocean acidification may enhance the calcification rates of marine organisms as an adaptive response, possibly accompanied by higher carbon fixation ability. Our theory also provides a compelling explanation for the multispecific fossil time-series record from ~200 years ago to present, in which mean coccolith size has increased along with rising atmospheric CO(2) concentration.  相似文献   

10.
The mean predicted decrease of 0.3–0.4 pH units in the global surface ocean by the end of the century has prompted urgent research to assess the potential effects of ocean acidification on the marine environment, with strong emphasis on calcifying organisms. Among them, the Mediterranean red coral (Corallium rubrum) is expected to be particularly susceptible to acidification effects, due to the elevated solubility of its Mg‐calcite skeleton. This, together with the large overexploitation of this species, depicts a bleak future for this organism over the next decades. In this study, we evaluated the effects of low pH on the species from aquaria experiments. Several colonies of C. rubrum were long‐term maintained for 314 days in aquaria at two different pH levels (8.10 and 7.81, pHT). Calcification rate, spicule morphology, major biochemical constituents (protein, carbohydrates and lipids) and fatty acids composition were measured periodically. Exposure to lower pH conditions caused a significant decrease in the skeletal growth rate in comparison with the control treatment. Similarly, the spicule morphology clearly differed between both treatments at the end of the experiment, with aberrant shapes being observed only under the acidified conditions. On the other hand, while total organic matter was significantly higher under low pH conditions, no significant differences were detected between treatments regarding total carbohydrate, lipid, protein and fatty acid composition. However, the lower variability found among samples maintained in acidified conditions relative to controls, suggests a possible effect of pH decrease on the metabolism of the colonies. Our results show, for the first time, evidence of detrimental ocean acidification effects on this valuable and endangered coral species.  相似文献   

11.
This study investigated the effects of experimentally manipulated seawater carbonate chemistry on several early life history processes of the Baltic tellin (Macoma balthica), a widely distributed bivalve that plays a critical role in the functioning of many coastal habitats. We demonstrate that ocean acidification significantly depresses fertilization, embryogenesis, larval development and survival during the pelagic phase. Fertilization and the formation of a D-shaped shell during embryogenesis were severely diminished: successful fertilization was reduced by 11% at a 0.6 pH unit decrease from present (pH 8.1) conditions, while hatching success was depressed by 34 and 87%, respectively at a 0.3 and 0.6 pH unit decrease. Under acidified conditions, larvae were still able to develop a shell during the post-embryonic phase, but higher larval mortality rates indicate that fewer larvae may metamorphose and settle in an acidified ocean. The cumulative impact of decreasing seawater pH on fertilization, embryogenesis and survival to the benthic stage is estimated to reduce the number of competent settlers by 38% for a 0.3 pH unit decrease, and by 89% for a 0.6 pH unit decrease from present conditions. Additionally, slower growth rates and a delayed metamorphosis at a smaller size were indicative for larvae developed under acidified conditions. This may further decline the recruit population size due to a longer subjection to perturbations, such as predation, during the pelagic phase. In general, early life history processes were most severely compromised at ~pH 7.5, which corresponds to seawater undersaturated with respect to aragonite. Since recent models predict a comparable decrease in pH in coastal waters in the near future, this study indicates that future populations of Macoma balthica are likely to decline as a consequence of ongoing ocean acidification.  相似文献   

12.
Ph. Dubois  M. Jangoux 《Zoomorphology》1990,109(5):263-272
Summary The very first mineral deposits appearing in regenerating fractured adambulacral spines of Asterias rubens are minute polyhedrons that cover the surface of fractured trabeculae. Polyhedrons fuse together forming a fold from which a microspine differentiates. Microspines develop into long linear trabeculae which send out lateral processes at regular length intervals. Lateral processes from adjacent trabeculae fuse together, bridging the trabeculae and giving the regenerate the typical meshwork structure of stereom. Most of the regenerate is built up according to this growth pattern which ensures its longitudinal growth. Simultaneously, the initial fascicular stereom of the stub sends out short radial processes which branch into upward and downward directed subprocesses. The latter fuse with their equivalents located above or below, building up longitudinal rows of stereom meshes. These rows then bridge together by additional branched or unbranched lateral processes, so forming a new stereom layer which progressively covers the whole stub. Up to three new layers of stereom are formed in this way at the stub periphery. These become continuous with the stereom layers of the regenerate by fusion of reciprocal subprocesses, so ensuring the continuity between the stub and the regenerate. In both structures the first stage of mineralization results in an open stereom. Stereom thickening occurs in a second stage of mineralization (that is chronologically separated from the formation of the open stereom) and results in the differentiation of the original stereom fabrics (i.e. fascicular stereom). Regeneration of removed spines starts with the formation of a new spine base made of labyrinthic stereom. The development of the latter mostly relies on short branched and unbranched processes which fuse with each other or with predifferentiated meshes. After completion of its base, the regenerating spine lengthens and thickens similarly to the regenerating fractured spines. The diversity of the stereom growth processes observed in the present work may be reduced to the combination of one to three elementary events, viz. the development of long linear processes, of short unbranched processes and of short branched processes. A survey of the literature allows the suggestion that the implementation of these elementary events is sufficient to describe most types of stereom morphogenesis.Senior research assistant NFSR (Belgium)  相似文献   

13.
To investigate carbon and nitrogen metabolism in Pyropia haitanensis in response to the combined conditions of ocean acidification and diurnal temperature variation, maricultured thalli were tested in acidified culture under different temperature treatments. The results showed a combined effect of ocean acidification and diurnal temperature difference on the C and N metabolism and growth of P. haitanensis. In acidifed culture, algal growth, maximum photosynthetic rate, nitrate reductase (NR) activity, amino acid (AA) content and AA score (AAS) were more significantly enhanced in seaweed under diurnal temperature variation than in seaweed at constant temperature. In acidified seawater, soluble carbohydrates in P. haitanensis increased due to greater dissolved inorganic carbon (DIC), whereas soluble proteins decreased. Under the diurnal temperature treatment, higher temperature during the light period enhanced accumulation of algal photosynthates, whereas lower temperature in the dark period reduced energy consumption, resulting in enhanced algal growth, AA content and AAS. We concluded that suitable diurnal temperature difference would be conducive to C fixation and N assimilation under ocean acidification. However, excessively high temperatures would depress algal photosynthesis and increase energy consumption, thereby exerting a negative effect on algal growth.  相似文献   

14.
Effects of naturally acidified seawater on seagrass calcareous epibionts   总被引:2,自引:0,他引:2  
Surface ocean pH is likely to decrease by up to 0.4 units by 2100 due to the uptake of anthropogenic CO2 from the atmosphere. Short-term experiments have revealed that this degree of seawater acidification can alter calcification rates in certain planktonic and benthic organisms, although the effects recorded may be shock responses and the long-term ecological effects are unknown. Here, we show the response of calcareous seagrass epibionts to elevated CO2 partial pressure in aquaria and at a volcanic vent area where seagrass habitat has been exposed to high CO2 levels for decades. Coralline algae were the dominant contributors to calcium carbonate mass on seagrass blades at normal pH but were absent from the system at mean pH 7.7 and were dissolved in aquaria enriched with CO2. In the field, bryozoans were the only calcifiers present on seagrass blades at mean pH 7.7 where the total mass of epiphytic calcium carbonate was 90 per cent lower than that at pH 8.2. These findings suggest that ocean acidification may have dramatic effects on the diversity of seagrass habitats and lead to a shift in the biogeochemical cycling of both carbon and carbonate in coastal ecosystems dominated by seagrass beds.  相似文献   

15.
Ocean acidification may increase calcification rates, but at a cost   总被引:1,自引:0,他引:1  
Ocean acidification is the lowering of pH in the oceans as a result of increasing uptake of atmospheric carbon dioxide. Carbon dioxide is entering the oceans at a greater rate than ever before, reducing the ocean's natural buffering capacity and lowering pH. Previous work on the biological consequences of ocean acidification has suggested that calcification and metabolic processes are compromised in acidified seawater. By contrast, here we show, using the ophiuroid brittlestar Amphiura filiformis as a model calcifying organism, that some organisms can increase the rates of many of their biological processes (in this case, metabolism and the ability to calcify to compensate for increased seawater acidity). However, this upregulation of metabolism and calcification, potentially ameliorating some of the effects of increased acidity comes at a substantial cost (muscle wastage) and is therefore unlikely to be sustainable in the long term.  相似文献   

16.
Knowledge of skeletogenesis in scleractinian corals is central to reconstructing past ocean and climate histories, assessing and counteracting future climate and ocean acidification impacts upon coral reefs, and determining the taxonomy and evolutionary path of the Scleractinia. To better understand skeletogenesis and mineralogy in extant scleractinian corals, we have investigated the nature of the initial calcium carbonate skeleton deposited by newly settling coral recruits. Settling Acropora millepora larvae were sampled daily for 10 days from initial attachment, and the carbonate mineralogy of their newly deposited skeletons was investigated. Bulk analyses using Raman and infrared spectroscopic methods revealed that the skeletons were predominantly comprised of aragonite, with no evidence of calcite or an amorphous precursor phase, although presence of the latter cannot be discounted. Sensitive selected area electron diffraction analyses of sub-micron areas of skeletal regions further consolidated these data. These findings help to address the uncertainty surrounding reported differences in carbonate mineralogy between larval and adult extant coral skeletons by indicating that skeletons of new coral recruits share the same aragonitic mineralogy as those of their mature counterparts. In this respect, we can expect that skeletogenesis in both larval and mature growth stages of scleractinian corals will be similarly affected by ocean acidification and predicted environmental changes.  相似文献   

17.
Ocean acidification is a pervasive stressor that could affect many marine organisms and cause profound ecological shifts. A variety of biological responses to ocean acidification have been measured across a range of taxa, but this information exists as case studies and has not been synthesized into meaningful comparisons amongst response variables and functional groups. We used meta-analytic techniques to explore the biological responses to ocean acidification, and found negative effects on survival, calcification, growth and reproduction. However, there was significant variation in the sensitivity of marine organisms. Calcifying organisms generally exhibited larger negative responses than non-calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. Calcification responses varied significantly amongst organisms using different mineral forms of calcium carbonate. Organisms using one of the more soluble forms of calcium carbonate (high-magnesium calcite) can be more resilient to ocean acidification than less soluble forms (calcite and aragonite). Additionally, there was variation in the sensitivities of different developmental stages, but this variation was dependent on the taxonomic group. Our analyses suggest that the biological effects of ocean acidification are generally large and negative, but the variation in sensitivity amongst organisms has important implications for ecosystem responses.  相似文献   

18.
The present study investigated the effects of ocean acidification and temperature increase on Neogloboquadrina pachyderma (sinistral), the dominant planktonic foraminifer in the Arctic Ocean. Due to the naturally low concentration of CO 3 2? in the Arctic, this foraminifer could be particularly sensitive to the forecast changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, perturbation experiments were performed on juvenile and adult specimens by manipulating seawater to mimic the present-day carbon dioxide level and a future ocean acidification scenario (end of the century) under controlled (in situ) and elevated temperatures (1 and 4?°C, respectively). Foraminifera mortality was unaffected under all the different experiment treatments. Under low pH, N. pachyderma (s) shell net calcification rates decreased. This decrease was higher (30?%) in the juvenile specimens than decrease observed in the adults (21?%) ones. However, decrease in net calcification was moderated when both, pH decreased and temperature increased simultaneously. When only temperature increased, a net calcification rate for both life stages was not affected. These results show that forecast changes in seawater chemistry would impact calcite production in N. pachyderma (s), possibly leading to a reduction of calcite flux contribution and consequently a decrease in biologic pump efficiency.  相似文献   

19.
Carbon dioxide-induced ocean acidification is predicted to have major implications for marine life, but the research focus to date has been on direct effects. We demonstrate that acidified seawater can have indirect biological effects by disrupting the capability of organisms to express induced defences, hence, increasing their vulnerability to predation. The intertidal gastropod Littorina littorea produced thicker shells in the presence of predation (crab) cues but this response was disrupted at low seawater pH. This response was accompanied by a marked depression in metabolic rate (hypometabolism) under the joint stress of high predation risk and reduced pH. However, snails in this treatment apparently compensated for a lack of morphological defence, by increasing their avoidance behaviour, which, in turn, could affect their interactions with other organisms. Together, these findings suggest that biological effects from ocean acidification may be complex and extend beyond simple direct effects.  相似文献   

20.
A growing body of evidence suggests that ocean acidification acting synergistically with ocean warming alters carbonate biomineralization in a variety of marine biota. Magnesium often substitutes for Ca in the calcite skeletons of marine invertebrates, increasing their solubility. The spatio-environmental distribution of Mg in marine invertebrates has seldom been studied, despite its importance for assessing vulnerabilities to ocean acidification. Because pH decreases with water depth, it is predicted that levels of Mg in calcite skeletons should also decrease to counteract dissolution. Such a pattern has been suggested by evidence from echinoderms. Data on magnesium content and depth in Arctic bryozoans (52 species, 103 individuals, 150 samples) are here used to test this prediction, aided by comparison with six conceptual models explaining all possible scenarios. Analyses were based on a uniform dataset spanning more than 200 m of coastal water depth. No significant relationship was found between depth and Mg content; indeed, the highest Mg content among the analyzed taxa (8.7 % mol MgCO3) was recorded from the deepest settings (>200 m). Our findings contrast with previously published results from echinoderms in which Mg was found to decrease with depth. The bryozoan results suggest that ocean acidification may have less impact on the studied bryozoans than is generally assumed. In the broad context, our study exemplifies quantitative testing of spatial patterns of skeletal geochemistry for predicting the biological effects of environmental change in the oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号