首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent sexual conflict model posits that a form of intersexual conflict may explain the persistence of males in androdioecious (males + hermaphrodites) populations of animals that are being selected to transition from dioecious (gonochoristic) mating to self‐compatible hermaphroditism. During the evolutionary spread of a self‐compatible hermaphrodite to replace females, the selective pressures on males to outcross are in conflict with the selective pressures on hermaphrodites to self. According to this model, the unresolved conflict interferes with the evolutionary trajectory from dioecy to hermaphroditism, slowing or halting that transition and strengthening the otherwise “transitory” breeding system of androdioecy into a potentially stable breeding strategy. Herein, we assess this model using two dioecious and two androdioecious clam shrimp (freshwater crustaceans) to ask two questions: (1) Have hermaphrodites evolved so that males cannot effectively recognize them?; and (2) Do androdioecious hermaphrodites avoid males? Androdioecious males made more mistakes than dioecious males when guarding potential mates suggesting that androdioecious males were less effective at finding hermaphrodites than dioecious males were at finding females. Similarly, in a three‐chambered experiment, focal hermaphrodites chose to aggregate with their same sex, whereas focal dioecious males chose to aggregate with the alternate sex. Together, these two experiments support the sexual conflict model of the maintenance of androdioecy and suggest that hermaphrodites are indeed evolving to avoid and evade males.  相似文献   

2.
Examinations of breeding system transitions have primarily concentrated on the transition from hermaphroditism to dioecy, likely because of the preponderance of this transition within flowering plants. Fewer studies have considered the reverse transition: dioecy to hermaphroditism. A fruitful approach to studying this latter transition can be sought by studying clades in which transitions between dioecy and hermaphroditism have occurred multiple times. Freshwater crustaceans in the family Limnadiidae comprise dioecious, hermaphroditic and androdioecious (males + hermaphrodites) species, and thus this family represents an excellent model system for the assessment of the evolutionary transitions between these related breeding systems. Herein we report a phylogenetic assessment of breeding system transitions within the family using a total evidence comparative approach. We find that dioecy is the ancestral breeding system for the Limnadiidae and that a minimum of two independent transitions from dioecy to hermaphroditism occurred within this family, leading to (1) a Holarctic, all‐hermaphrodite species, Limnadia lenticularis and (2) mixtures of hermaphrodites and males in the genus Eulimnadia. Both hermaphroditic derivatives are essentially females with only a small amount of energy allocated to male function. Within Eulimnadia, we find several all‐hermaphrodite populations/species that have been independently derived at least twice from androdioecious progenitors within this genus. We discuss two adaptive (based on the notion of ‘reproductive assurance’) and one nonadaptive explanations for the derivation of all‐hermaphroditism from androdioecy. We propose that L. lenticularis likely represents an all‐hermaphrodite species that was derived from an androdioecious ancestor, much like the all‐hermaphrodite populations derived from androdioecy currently observed within the Eulimnadia. Finally, we note that the proposed hypotheses for the dioecy to hermaphroditism transition are unable to explain the derivation of a fully functional, outcrossing hermaphroditic species from a dioecious progenitor.  相似文献   

3.
Androdioecy was first described by Darwin in his seminal work on barnacle diversity; he identified males and hermaphrodites in the same reproductive population. Today, we realize that many androdioecious plants and animals share astonishing similarities, particularly with regard to their evolutionary history and mating system. Notably, these species were ancestrally dioecious, and their mating system has the following characteristics: hermaphrodites self‐fertilize frequently, males are more successful in large mating groups, and males have a mating advantage. A male mating advantage makes androdioecy more likely to persist over evolutionary times. Androdioecious barnacles, however, appear to persist as an outlier with a different evolutionary trajectory: they originate from hermaphroditic species. Although sexual systems of androdioecious barnacles are known, no information on the mating system of androdioecious barnacles is available. This study assessed the mating system of the androdioecious barnacle Chelonibia testudinaria. In contrast to other androdioecious species, C. testudinaria does not self‐fertilize, males do not have a mating advantage over hermaphrodites, and the average mating group is quite small, averaging only three individuals. Mating success is increased by proximity to the mate and penis length. Taken together, the mating system of C. testudinaria is unusual in comparison with other androdioecious plants and animals, and the lack of a male mating advantage suggests that the mating system alone does not provide an explanation for the maintenance of androdioecy in this species. Instead, we propose that sex‐specific life history equalizes male and hermaphroditic overall fitness.  相似文献   

4.
Among the variety of reproductive mechanisms exhibited by living systems, one permutation--androdioecy (mixtures of males and hermaphrodites)--is distinguished by its rarity. Models of mating system evolution predict that androdioecy should be a brief stage between hermaphroditism and dioecy (separate males and females), or vice versa. Herein we report evidence of widespread and ancient androdioecy in crustaceans in the genus Eulimnadia, based on observations of over 33,000 shrimp from 36 locations from every continent except Antarctica. Using phylogenetic, biogeographical and palaeontological evidence, we infer that androdioecy in Eulimnadia has persisted for 24-180 million years and has been maintained through multiple speciation events. These results suggest that androdioecy is a highly successful aspect of the life history of these freshwater crustaceans, and has persisted for orders of magnitude longer than predicted by current models of this rare breeding system.  相似文献   

5.
Precopulatory mate guarding primarily occurs when males encounter receptive females at a low enough rate that such females become a valuable resource once encountered. Such circumstances are common in aquatic crustaceans wherein females are only receptive for a short period directly after molting. In these species, males commonly mate guard by physically attaching themselves to their prospective mates for hours to days at a time. To be effective in mate guarding, males must be able to assess the time to receptivity in their mates, which is commonly via chemical cues associated with molting. Clam shrimp in the genus Eulimnadia exhibit mate guarding, but with an important variation: these species are mixtures of males and hermaphrodites (androdioecy) rather than males and females. Nonetheless, the mate guarding behaviors of these shrimp are much the same as in other aquatic crustaceans. In this study, three projects were undertaken to determine the ability of Eulimnadia texana males to assess hermaphroditic receptivity. Males were found to be unable to assess receptivity without physically contacting hermaphrodites. However, after physical contact, males spent a significantly greater amount of time guarding receptive relative to non‐receptive hermaphrodites. Additionally, male interest in mate guarding was highest during the period between the dropping of one clutch of eggs and the extrusion of the following clutch. Because this period is also associated with hermaphroditic molting, it is consistent with the notion that males cue into chemicals associated with molting to determine hermaphroditic receptivity. These findings are consistent with previous studies of mating behavior in this species, and we discuss their importance to future tests of optimal mate guarding planned for these shrimp.  相似文献   

6.
Mathematical models predict that to maintain androdioecious populations, males must have at least twice the fitness of male function in hermaphrodites. To understand how androdioecy is maintained in Laguncularia racemosa (white mangrove), outcrossing, inbreeding depression, and relative male fitness were estimated in two androdioecious populations and one hermaphroditic population. Outcrossing was estimated based on length of pollinator foraging bout and pollen carryover assumptions. Inbreeding depression was measured at three life stages: fruit set, seedling emergence, and seedling survivorship. The relative fitnesses of males and the male component of hermaphrodites were compared at these three stages and at the pollen production stage. Male frequency predictions generated by Lloyd's model were compared with observed frequencies in two androdioecious subpopulations. Outcrossing estimates were moderate for all populations (0.29-0.66). Inbreeding depression varied among populations (-0.03-0.86), but the strength of inbreeding depression did not increase with male frequency. Males produced significantly more flowers/inflorescence than hermaphrodites, but pollen production/flower did not differ. Male and hermaphroditic progeny did not differ significantly at other life stages. Populations of white mangrove with male plants were functionally androdioecious. Lloyd's model accurately predicted male frequency in one androdioecious subpopulation, but underestimated male frequency in the second subpopulation.  相似文献   

7.
Androdioecy, where males co-occur with hermaphrodites, is a rare sexual system in plants and animals. It has a scattered phylogenetic distribution, but it is common and has persisted for long periods of evolutionary time in branchiopod crustaceans. An earlier model of the maintenance of males with hermaphrodites in this group, by Otto et al. (1993), considered the importance of male-hermaphrodite encounter rates, sperm limitation, male versus hermaphrodite viability and inbreeding depression suffered by selfed progeny. Here I advance this model in two ways: (1) by exploring the conditions that would allow the invasion of hermaphrodites into a dioecious population and that of females into an androdioecious population; and (2) by incorporating a term that accounts for the potential effects of genetic load linked to a dominant hermaphrodite-determining allele in androdioecious populations. The new model makes plausible sense of observations made in populations of the species Eulimnadia texana, one of a number of related species whose common ancestor evolved hermaphroditism (and androdioecy) from dioecy. In particular, it offers an explanation for the long evolutionary persistence of androdioecy in branchiopods and suggests reasons for why dioecy has not re-evolved in the clade. Finally, it provides a rather unusual illustration of the implications of the degeneration of loci linked to a sex-determining locus.  相似文献   

8.
The evolutionary pathway between hermaphroditism and dioecy (females and males in a single population) draws widespread interests, and androdioecy (bisexuals and males in a single population) is rarely achieved as an intermediate state between the two breeding systems. Flower bud differentiations in the pistils of hermaphrodites and the pistillodes of males in androdioecious Tapiscia sinensis Oliv. are investigated by routine paraffin section technology, light microscopy, and scanning electron microscopy. A phylogenetic approach is used to analyze the origin of androdioecy. In T. sinensis, hermaphroditic flowers (HF) and male flowers (MF) experienced a similar development pattern in early flower bud differentiation, including the initiation of tepals and stamens. However, the carpel differentiation of MF and HF proceed in different patterns. In HF, the central zone bulges out and produces a ring meristem on which two to three carpel primordia emerge, which eventually developed into a normal pistil with a stigma, a style, and an ovary. However, in most MF, vestigial pistils are stem‐like (type I), and very few have an empty ovary (type II) or a sterile ovule (type III). Moreover, the evolution of sexual systems within the Huerteales indicates that hermaphroditism is the primitive character of T. sinensis. Tapiscia sinensis shows different degrees of reduction between male flowers and bisexual ones in the evolution to dioecy. Functional androdioecy originated from a hermaphroditic ancestor in T. sinensis and, as an intermediate sexual system, involves evolution from hermaphrodites to dioecy.  相似文献   

9.
10.
Abstract Androdioecy (the presence of males and hermaphrodites in a breeding population) is a rare reproductive system in plants, with Datisca glomerata (Datiscaceae) representing the only well-documented example. Recent reports of high outcrossing rates, inbreeding depression, and high male pollen production satisfy theoretical predictions for the continued maintenance of androdioecy in populations of this species. However, in prior studies pollen production was measured indirectly in terms of numbers of anthers per flower—based on the assumption that male and hermaphroditic plant have equal numbers of flowers and that anthers from the two sexual morphs produce equivalent amounts of pollen. Herein, we demonstrate that male and hermaphrodite plants do not differ significantly in terms of flower number, but that pollen production in anthers from hermaphroditic plants is 12.6% higher than in anthers from male plants, thus refining the estimate of relative pollen fecundity of male versus hermaphrodite plants. The differential lowers the frequency of males predicted by theory, but is still consistent with the maintenance of androdioecy in this species.  相似文献   

11.
Tapiscia sinensis, a rare endemic woody plant with both male and hermaphrodite individuals, is distributed in southern China. Whether T. sinensis is functionally androdioecious is unknown. In this study, we compare the male fitness between male and hermaphrodite individuals and perform pollination experiments in different habitats, identify the ability of actual siring of pollen from hermaphrodites and males under natural pollination, and discuss the evolution and maintenance of androdioecy in T. sinensis. Research suggests that flowers and fruits grow synchronously on hermaphrodite plants of T. sinensis from April to June. The males of T. sinensis had more than twice the genetic contribution of hermaphrodites through their male function and the fruit set from male pollination and cross‐pollination was the highest in all of the treatments, whereas that from self‐pollination was the lowest. Additionally, paternity analysis showed that the hermaphroditic pollen could result in siring success under natural pollination. The results showed that T. sinensis is a functionally androdioecious tree, that male individuals might evolve from a hermaphroditic ancestor and that the synchronous growth of flowers and fruit in hermaphrodites might facilitate the evolution and maintenance of androdioecy in T. sinensis.  相似文献   

12.
The Mediterranean shrub Phillyrea angustifolia is one of the few plants that display androdioecy, a rare breeding system in which males co-occur with hermaphrodites. However, it has been difficult to account for male frequencies previously documented for this species, which have frequently been higher than 0.5. Here we present sex-ratio data from 13 sites in Spain and Portugal that throw further light on the maintenance of androdioecy in P. angustifolia . The inferred proportion of males in these populations was around 0.3, substantially lower that 0.5 and concurring with theoretical predictions for androdioecy. Differences in the proportion of hermaphrodites in flower between "stressed" and "nonstressed" sites suggest the existence of an important life-history trade-off between fruit production and the rate at which plants recover from recurrent disturbances such as fire. The reduced frequency of flowering by hermaphrodites relative to males may help to explain the maintenance of androdioecy in this long-lived, woody species.  相似文献   

13.
The clam shrimp Eulimnadia texana has a rare mating system known as androdioecy, in which males and hermaphrodites cooccur butthere are no pure females. In this species, reproduction takesplace by outcrossing between males and hermaphrodites, or byselfing within a hermaphrodite; this system provides a uniqueopportunity to examine the adaptive significance of out-crossingand selfing in animals. Our study examined mating behavior in hermaphrodites and males from two populations to understandthe propensity of these shrimp to mate and to estimate a parameterof a model developed by Otto et al. (American Naturalist 141:329-337),which predicts the conditions for stability of the mixed matingsystem in E. texana. Here we present evidence that mating frequencyis environmentally sensitive, with greater numbers of encountersand matings per male when males are rare and in younger males.However, the effects of shrimp density, relative male frequency,and shrimp age interact in a complex way to determine malemating success. Overall, mating frequency was determined bya combination of encounter rates between the sexes and theproportion of encounters resulting in mating. The mating rateswere then used to estimate one of four parameters of the Ottoet al. model, and these estimates were combined with previousestimates of the other three parameters to examine the fitof the predicted to the observed sex ratios in the two populations.  相似文献   

14.
Barnacles, marine crustaceans, have three sexual patterns: simultaneous hermaphroditism, dioecy and androdioecy. In dioecy and androdioecy, large individuals (females and hermaphrodites, respectively) are attached by dwarf males. Depending on species, some dwarf males grow up, others do not in their life time. To investigate which environmental conditions affect growth patterns of dwarf males of barnacles, we investigate the evolutionarily stable life history strategy of dwarf males using Pontryagin's maximum principle. Sperm competition among dwarf males and that among dwarf males and large hermaphrodites is taken into account. Dwarf males grow up in food-rich environments, while they do not grow at all in food-poor environments. ESS of the resource allocation schedule between reproduction and growth follows an "intermediate growth strategy" (simultaneous growth and reproduction) for dioecious species, in which sperm competition is not severe. On the other hand, it approaches "bang-bang control" (switching from allocating all resources toward growth then to reproduction), as sperm competition against surrounding large hermaphrodites becomes severe in androdioecious species.  相似文献   

15.
According to the current, widely accepted paradigm, the evolutionary transition from hermaphroditism toward separate sexes occurs in two successive steps: an initial, intermediate step in which unisexual individuals, male or female, sterility mutants coexist with hermaphrodites and a final step that definitively establishes dioecy. Two nonexclusive processes can drive this transition: inbreeding avoidance and reallocation of resources from one sexual function to the other. Here, we report results of controlled crosses between males and hermaphrodites in Phillyrea angustifolia, an androdioecious species with two mutually intercompatible, but intraincompatible groups of hermaphrodites. We observed different segregation patterns that can be explained by: (1) epistatic interactions between two unlinked diallelic loci, determining sex and mating compatibility, and (2) a mutation with pleiotropic effects: female sterility, full compatibility of males with both hermaphrodite incompatibility groups, and complete male‐biased sex‐ratio distortion in one of the two groups. Modeling shows that these mechanisms can explain the high frequency of males in populations of P. angustifolia and can promote the maintenance of androdioecy without requiring inbreeding depression or resource reallocation. We thus argue that segregation distortion establishes the right conditions for the evolution of cryptic dioecy and potentially initiates the evolution toward separate sexes.  相似文献   

16.
When males and hermaphrodites coexist: a review of androdioecy in animals   总被引:2,自引:0,他引:2  
Androdioecy (populations consisting of males and hermaphrodites)is a rare mating system in plants and animals: up to 50 plantsand only 36 animals have been described as being androdioecious,with most of the latter being crustaceans. To date, a thoroughcomparative analysis of androdioecy in animals has not beenundertaken. Herein we present such an analysis. Androdioecyhas only been extensively surveyed in 2 animal taxa: the nematodeCaenorhabditis and the clam shrimp Eulimnadia. The other majortaxon having androdioecious species is the Cirripedia (barnacles),but there are only limited studies on androdioecy in this group.In animals, androdioecy is found either in species that havemorphologically and ecologically distinct sexes (that is, hermaphroditesand small, "complemental" males) that are derived from hermaphroditicancestors (that is, the barnacles) or in species that have similarly-sizedmales and hermaphrodites that have been derived from dioeciousancestors (the remaining androdioecious species). We suggestthat the barnacles have evolved a sexual specialization in theform of these complemental males that can more efficiently usethe constrained habitats that these barnacles often experience.For the remaining species, we suggest that androdioecy has evolvedas a response to reproductive assurance in species that experienceepisodic low densities. Additionally, we hypothesize that thedevelopment of mechanisms allowing reproductive assurance inspecies with a number of sexually differentiated traits is mostlikely to result in androdioecy rather than gynodioecy (mixturesof females and hermaphrodites), and that these species may bedevelopmentally constrained to stay androdioecious rather thanbeing capable of evolving into populations solely consistingof efficient, self-compatible hermaphrodites. We conclude bysuggesting several areas in need of further study to understandmore completely the evolution and distribution of this interestingmating system in animals.  相似文献   

17.
The evolutionary pathway between hermaphroditism and dioecy draws widespread interests, and androdioecy is rarely achieved as an intermediate state between the two breeding systems. Flower bud differentiations in the pistils of hermaphrodites and the pistillodes of males in androdioecious Osmanthus fragrans L. were investigated by paraffin sectioning to elucidate the evolution to androdioecy. Results showed that the regularity and rhythm in flower bud differentiation between males and hermaphrodites were almost consistent and included six main stages. However, the hermaphrodites always lagged behind the males at each stage. The apical floret in the same inflorescence developed earlier than did the lateral ones in both hermaphrodites and males. The most significant difference between males and hermaphrodites was observed at the carpel differentiation stage. Two carpel primordia appeared inside the stamens of both males and hermaphrodites at the initial stage. These two carpels gradually fused with each other in hermaphrodites and eventually developed into a normal pistil with a stigma, a style, and an ovary. However, a cavity grew conspicuously over time between two carpels as developed in males. The two carpels eventually developed into a pistillode with two independent bracteal tissues. However, from the whole development process, the male retained the developmental residue of the hermaphrodite. Thus, the pistillodes of males could be traced to the pistils of hermaphrodites. This finding shows that males may be derived from hermaphrodites in O. fragrans. On the basis of this finding and previous studies on Oleaceae, androdioecy could be regarded as a transition from hermaphroditism to dioecy in this family.  相似文献   

18.
Lana Knoll 《Hydrobiologia》1995,298(1-3):73-81
The clam shrimp,Eulimnadia texana (Crustacea, Conchostraca), is found in freshwater ephemeral environments throughtout the United States. Individual clam shrimp of this species are either hermaphroditic or male, a relatively rare mating system for animals known as androdioecy. Comparison of sex ratios between four neighboring populations ofE. texana in Southern New Mexico showed wide variation in the ratio of males to hermaphrodites with males making up as much as 42% of some populations and not occurring at all within others. Since little is known about the behavior of this species, an ethogram and time budget were prepared based on observations of laboratory populations. Males attempt to clasp hermaphrodites prior to mating. Precopulatory mate guarding occurs in this species. Outcrossing generally occurs during mate guarding and after the hermaphrodite molts. Hermaphrodites, however, seem to control the mating process. Successful mating by males never occured if the hermaphrodite struggled with him; hermaphrodite will self in the presence of males.  相似文献   

19.
How and why diverse sexual systems evolve are fascinating evolutionary questions, but few empirical studies have dealt with these questions in animals. Pedunculate (gooseneck) barnacles show such diversity, including simultaneous hermaphroditism, coexistence of dwarf males and hermaphrodites (androdioecy), and coexistence of dwarf males and females (dioecy). Here, we report the first phylogenetically controlled test of the hypothesis that the ultimate cause of the diverse sexual systems and presence of dwarf males in this group is limited mating opportunities for non-dwarf individuals, owing to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin.  相似文献   

20.
Androdioecy is an unusual breeding system in which populations consist of separate male and hermaphrodite individuals. The evolution of androdioecy is still poorly understood; however, there is evidence from several androdioecious species that the breeding system may have evolved from dioecy (males and females). This article presents a simple deterministic model showing that androdioecy can evolve from dioecy under a broad range of realistic conditions. For the evolution of androdioecy from dioecy, hermaphrodites must be able to invade the dioecious population. Then, males must be maintained, while females are eliminated. Hermaphrodite invasion is favored when females are pollen limited and hermaphrodites have high overall fertility and are self-fertile. Male maintenance is favored when hermaphrodites resemble females, having high seed production and low pollen fitness, and when the selfing rate is not too high. These conditions were satisfied over a broad and realistic range of parameter values, suggesting that the evolution of androdioecy from dioecy is highly plausible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号