共查询到20条相似文献,搜索用时 15 毫秒
1.
Dominik Schüßler Marina B. Blanco Nicola K. Guthrie Gabriele M. Sgarlata Melanie Dammhahn Refaly Ernest Mamy Rina Evasoa Alida Hasiniaina Daniel Hending Fabien Jan Barbara le Pors Alex Miller Gillian Olivieri Ando N. Rakotonanahary Solofomalala Jacques Rakotondranary Romule Rakotondravony Tantely Ralantoharijaona Veronarindra Ramananjato Blanchard Randrianambinina Nancia N. Raoelinjanakolona Emilienne Rasoazanabary Rodin M. Rasoloarison David W. Rasolofoson Solofonirina Rasoloharijaona Emmanuel Rasolondraibe Sam Hyde Roberts Helena Teixeira Tobias van Elst Steig E. Johnson Jörg U. Ganzhorn Lounès Chikhi Peter M. Kappeler Edward E. Louis Jr. Jordi Salmona Ute Radespiel 《American journal of physical anthropology》2024,183(1):60-78
2.
3.
ABEL BERNADOU CHRISTINE RÖMERMANN NANA GRATIASHVILI JÜRGEN HEINZE 《Ecological Entomology》2016,41(6):733-736
1. Bergmann's rule states that organisms inhabiting colder environments show an increase in body size or mass in comparison to their conspecifics living in warmer climates. Although originally proposed for homoeothermic vertebrates, this rule was later extended to ectotherms. In social insects, only a few studies have tested this rule and the results were ambiguous. Here, ‘body size’ can be considered at two different levels (the size of the individual workers or the size of the colony). 2. In this study, data from 53 nests collected along altitudinal gradients in the Alps were used to test the hypotheses that the worker body size and colony size of the ant Leptothorax acervorum increase with increasing altitude and therefore follow Bergmann's rule. 3. The results show that the body size of workers but not the colony size increases with altitude. Whether this pattern is driven by starvation resistance or other mechanisms remains to be investigated. 相似文献
4.
Xiaomei Wei Linmiao Yan Chengjian Zhao Yueyun Zhang Yongli Xu Bo Cai Ni Jiang Yong Huang 《Ecology and evolution》2018,8(9):4443-4454
Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor, we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor (F23,124 = 11.32, p < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females. 相似文献
5.
1. In most birds and mammals, larger individuals of the same species tend to be found at higher latitudes, but in insects, body size–latitude relationships are highly variable. 2. Recent studies have shown that larger‐bodied insect species are more likely to decrease in size when reared at increased temperature, compared with smaller‐sized species. These findings have led to the prediction that a positive relationship between body size and latitude should be more prevalent in larger‐bodied insect species. 3. This study measured the body size of > 4000 beetle specimens (12 species) collected throughout North America. Some beetle species increased in size with latitude, while others decreased. Importantly, mean species body size explained c. 30% of the interspecific variation in the size–latitude response. 4. As predicted, larger‐bodied beetle species were more likely to show a positive relationship between body size and latitude (Bergmann's rule), and smaller‐bodied species were more likely to show a negative body size–latitude relationship (inverse Bergmann's rule). 5. These body size–latitude patterns suggest that size‐specific responses to temperature may underlie global latitudinal distributions of body size in Coleoptera, as well as other insects. 相似文献
6.
Shai Meiri Tamar Dayan Daniel Simberloff Richard Grenyer 《Proceedings. Biological sciences / The Royal Society》2009,276(1661):1469-1476
Evolutionary biologists have long been fascinated by both the ways in which species respond to ecological conditions at the edges of their geographic ranges and the way that species'' body sizes evolve across their ranges. Surprisingly, though, the relationship between these two phenomena is rarely studied. Here, we examine whether carnivore body size changes from the interior of their geographic range towards the range edges. We find that within species, body size often varies strongly with distance from the range edge. However, there is no general tendency across species for size to be either larger or smaller towards the edge. There is some evidence that the smallest guild members increase in size towards their range edges, but results for the largest guild members are equivocal. Whether individuals vary in relation to the distance from the range edges often depends on the way edge and interior are defined. Neither geographic range size nor absolute body size influences the tendency of size to vary with distance from the range edge. Therefore, we suggest that the frequent significant association between body size and the position of individuals along the edge-core continuum reflects the prevalence of geographic size variation and that the distance to range edge per se does not influence size evolution in a consistent way. 相似文献
7.
Bergmann's rule describes the macroecological pattern of increasing body size in response to higher latitudes and elevations. This pattern is extensively documented in endothermic vertebrates, within and among species; however, studies involving ectotherms are less common and suggest no consistent pattern for amphibians and reptiles. Moreover, adaptive traits, such as epidermal features like scales, have not been widely examined in conjunction with Bergmann's rule, even though these traits affect physiological processes, such as thermoregulation, which are hypothesized as underlying mechanisms for the pattern. Here, we investigate how scale characters correlate with elevation among 122 New World pitviper species, representing 15 genera. We found a contra‐Bergmann's pattern, where body size is smaller at higher elevations. This pattern was mainly driven by the presence of small‐bodied clades at high elevations and large‐bodied clades at low elevations, emphasizing the importance of taxonomic scope in studying macroecological patterns. Within a subset of speciose clades, we found that only Crotalus demonstrated a significant negative relationship between body size and elevation, perhaps because of its wide elevational range. In addition, we found a positive correlation between scale counts and body size but no independent effect of elevation on scale numbers. Our study increases our knowledge of Bergmann's rule in reptiles by specifically examining characters of squamation and suggests a need to reexamine macroecological patterns for this group. 相似文献
8.
Michael A. Schillaci 《American journal of primatology》2010,72(2):152-160
This study examines latitudinal and insular variation in the expression of sexual dimorphism in cranial length in three geographical groupings of Macaca fascicularis. In addition, the relationship between cranial length dimorphism (CLD) and sex‐specific size is examined. The results of the study identified a significant relationship between CLD and latitude for only one of the three geographic groupings. Sex‐specific relationships between cranial length and CLD were detected. The pattern of these relationships varied by geographic grouping. This study is important because it demonstrates that despite very similar levels of CLD in a single primate species, there exists important geographic variability in the correlates of that dimorphism. I suggest that geographically varying ecological factors may influence sex‐specific natural selection and the intensity of CLD in M. fascicularis. Gaining a better understanding of this geographical variability will require that future research examines morphological variation, including CLD, within its corresponding ecological and social contexts. Such research should be comparative, and incorporate multiple geographically separated populations with disparate environmental settings. Am. J. Primatol. 72:152–160, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
9.
Cowgill LW Eleazer CD Auerbach BM Temple DH Okazaki K 《American journal of physical anthropology》2012,148(4):557-570
While ecogeographic variation in adult human body proportions has been extensively explored, relatively less attention has been paid to the effect of Bergmann's and Allen's rules on human body shape during growth. The relationship between climate and immature body form is particularly important, as immature mortality is high, mechanisms of thermoregulation differ between young and mature humans, and immature body proportions fluctuate due to basic parameters of growth. This study explores changes in immature ecogeographic body proportions via analyses of anthropometric data from children included in Eveleth and Tanner's (1976) Worldwide Variation in Human Growth, as well as limb proportion measurements in eight different skeletal samples. Moderate to strong correlations exist between climatic data and immature stature, weight, BMI, and bi-iliac breadth; these relationships are as strong, if not stronger, in immature individuals as they are in adults. Correlations between climate and trunk height relative to stature are weak or nonexistent. Altitude also has significant effects on immature body form, with children from higher altitudes displaying smaller statures and lower body weights. Brachial and crural indices remain constant over the course of growth and display consistent, moderate correlations with latitude across ontogeny that are just as high as those detected in adults. The results of this study suggest that while some features of immature body form, such as bi-iliac breadth and intralimb indices, are strongly dictated by ecogeographic principles, other characteristics of immature body proportions are influenced by intrinsic and extrinsic factors such as nutrition and basic constraints of growth. 相似文献
10.
11.
Stillwell RC Moya-Laraño J Fox CW 《Evolution; international journal of organic evolution》2008,62(10):2534-2544
Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the \"relative\" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection (\"Large,\"Control,\" and \"Small\" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines. 相似文献
12.
13.
Progressive body‐size dwarfing of animal populations is predicted under chronic mortality stress, such as that inflicted by human harvesting. However, empirical support for such declines in body size due to elevated mortality is lacking. In fact, the size of three macropodid species ─ the two grey kangaroo species, Macropus fuliginosus and M. giganteus, and the Red‐necked Wallaby, M. rufogriseus ─ appears to have increased since European settlement in Australia, despite these species being subjected to size‐selective harvesting over this period. To test whether this unexpected trend also characterises other species, we sought evidence of human‐induced body‐size changes in the two most widely distributed kangaroo species, the Euro Macropus robustus and Red Kangaroo M. rufus, from the late 19th Century onwards. Spatial autoregressive models controlling for age, sex and island effects were first used to identify environmental predictors of body size and to evaluate multi‐causal explanations for spatial body‐size patterns. Primary productivity emerged as the key driver of body size in both species, while heat conservation was supported as a further mechanism explaining the large body size of M. robustus in cold climatic regions. After controlling for these environmental factors, we find that the size of M. rufus has been stable over time and limited support for a small increase in the size of M. robustus. Hence, there is no empirical evidence that contemporary size‐selective harvesting has reduced body size in these species. Rather, the latter result supports the possibility that pasture improvement and/or dingo control (and associated reduction in predation pressure) facilitated body‐size increases following European settlement in Australia. 相似文献
14.
Satu Estlander Kimmo K. Kahilainen Jukka Horppila Mikko Olin Martti Rask Jan Kubečka Jiří Peterka Milan Říha Hannu Huuskonen Leena Nurminen 《Ecology and evolution》2017,7(2):665-673
Sexual dimorphism is common across the animal kingdom, but the contribution of environmental factors shaping differences between the sexes remains controversial. In ectotherms, life‐history traits are known to correlate with latitude, but sex‐specific responses are not well understood. We analyzed life‐history trait variation between the sexes of European perch (Perca fluviatilis L.), a common freshwater fish displaying larger female size, by employing a wide latitudinal gradient. We expected to find sex‐dependent latitudinal variation in life‐history variables: length at age, length increment, and size at maturity, with females showing consistently higher values than males at all latitudes. We further anticipated that this gender difference would progressively decrease with the increasingly harsh environmental conditions toward higher latitude. We hypothesized that growth and length increment would decrease and size/age at maturity would increase at higher latitudes. Our results confirmed female‐biased sexual size dimorphism at all latitudes and the magnitude of sexual dimorphism diminished with increase in latitude. Growth of both sexes decreased with increase in latitude, and the female latitudinal clines were steeper than those of males. Hence, we challenge two predominant ecological rules (Rensch's and Bergmann's rules) that describe common large‐scale patterns of body size variation. Our data demonstrate that these two rules are not universally applicable in ectotherms or female‐biased species. Our study highlights the importance of sex‐specific differences in life‐history traits along a latitudinal gradient, with evident implications for a wide range of studies from individual to ecosystems level. 相似文献
15.
Amy E. Arnett Nicholas J. Gotelli 《Evolution; international journal of organic evolution》1999,53(4):1180-1188
In eastern North America, body size of the larval ant lion Myrmeleon immaculatus increases from south to north, following Bergmann's rule. We used a common-garden experiment and a reciprocal-transplant experiment to evaluate the effects of food and temperature on ant lion growth, body size, and survivorship. In the laboratory common-garden experiment, first-instar larvae from two southern (Georgia, South Carolina) and two northern (Connecticut, Rhode Island) populations were reared in incubators under high- and low-food and high- and low-temperature regimes. For all populations, high food increased final body mass and growth rate and decreased development time. Growth rates were higher at low temperatures, but temperature did not affect larval or adult body mass. Survivorship was highest in high-food and low-temperature treatments. Across all food and temperature treatments, northern populations exhibited a larger final body mass, shorter development time, faster growth rate, and greater survivorship than did southern populations. Results were similar for a field reciprocal-transplant experiment of third-instar larvae between populations in Connecticut and Oklahoma: Connecticut larvae grew faster than Oklahoma larvae, regardless of transplant site. Conversely, larvae transplanted to Oklahoma grew faster than larvae transplanted to Connecticut, regardless of population source. These results suggest that variation in food availability, not temperature, may account for differences in growth and body size of northern and southern ant lions. Although northern larvae grew faster and reached a larger body size in both experiments, northern environments should suppress growth because of reduced food availability and a limited growing season. This study provides the first example of countergradient selection causing Bergmann's rule in an ectotherm. 相似文献
16.
The importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizards 总被引:1,自引:0,他引:1
We tested for the occurrence of Bergmann's rule, the pattern of increasing body size with latitude, and Rapoport's rule, the positive relationship between geographical range size and latitude, in 34 lineages of Liolaemus lizards that occupy arid regions of the Andean foothills. We tested the climatic-variability hypothesis (CVH) by examining the relationship between thermal tolerance breadth and distribution. Each of these analyses was performed varying the level of phylogenetic inclusiveness. Bergmann's rule and the CVH were supported, but Rapoport's rule was not. More variance in the data for Bergmann's rule and the CVH was explained using species belonging to the L. boulengeri series rather than all species, and inclusion of multiple outgroups tended to obscure these macroecological patterns. Evidence for Bergmann's rule and the predicted patterns from the CVH remained after application of phylogenetic comparative methods, indicating a greater role of ecological processes rather than phylogeny in shaping the current species distributions of these lizards. 相似文献
17.
Jack V. Johnson Catherine Finn Jacinta Guirguis Luke E. B. Goodyear Lilly P. Harvey Ryan Magee Santiago Ron Daniel Pincheira-Donoso 《Global Ecology and Biogeography》2023,32(8):1311-1322
Aim
The emergence of large-scale patterns of animal body size is the central expectation of a wide range of (macro)ecological and evolutionary hypotheses. The drivers shaping these patterns include climate (e.g. Bergmann's rule), resource availability (e.g. ‘resource rule’), biogeographic settings and niche partitioning (e.g. adaptive radiation). However, these hypotheses often make opposing predictions about the trajectories of body size evolution. Therefore, whether underlying drivers of body size evolution can be identified remains an open question. Here, we employ the most comprehensive global dataset of body size in amphibians, to address multiple hypotheses that predict patterns of body size evolution based on climatic factors, ecology and biogeographic settings to identify underlying drivers and their generality across lineages.Location
Global.Time Period
Present.Major Taxa Studied
Amphibians.Methods
Using a global dataset spanning 7270 (>87% of) species of Anura, Caudata and Gymnophiona, we employed phylogenetic Bayesian modelling to test the roles of climate, resource availability, insularity, elevation, habitat use and diel activity on body size.Results
Only climate and elevation drive body size patterns, and these processes are order-specific. Seasonality in precipitation and in temperature predict body size clines in anurans, whereas caecilian body size increases with aridity. However, neither of these drivers explained variation in salamander body size. In both anurans and caecilians, size increases with elevational range and with midpoint elevation in caecilians only. No effects of mean temperature, resource abundance, insularity, time of activity or habitat use were found.Main Conclusions
Precipitation and temperature seasonality are the dominant climatic drivers of body size variation in amphibians overall. Bergmann's rule is consistently rejected, and so are other alternative hypotheses. We suggest that the rationale sustaining existing macroecological rules of body size is unrealistic in amphibians and discuss our findings in the context of the emerging hypothesis that climate change can drive body size shifts. 相似文献18.
Alexander L. Jaffe Shane C. Campbell‐Staton Jonathan B. Losos 《Biological journal of the Linnean Society. Linnean Society of London》2016,117(4):760-774
The green anole, Anolis carolinensis, has long been an important model organism for studies of physiology and behaviour, and recently became the first reptile to have its genome sequenced. With a large and environmentally heterogeneous distribution, especially in relation to well‐studied Antillean relatives, A. carolinensis is also emerging as an important organism for novel studies of geographical differentiation and adaptation. In the present study, we quantify the degree of morphological variation in this species and test for environmental correlates of this variation. We also examine adherence to Bergmann's and Allen's rule, two eco‐geographical principles that have been well studied over large species ranges. We sampled from 14 populations across the distribution of the species in North America and measured 28 distinct morphological traits. We also collected a suite of environmental variables for each site, including those related to temperature, precipitation, and vegetation. Ultimately, we found a large degree of geographical variation in morphology, with head traits contributing the most to differences among populations. Morphological variation was correlated with variation in temperature, precipitation, and latitude across sites. We found no support for reverse Bergmann's rule typical of squamates, although we did find a trend of reverse Allen's rule. Ultimately, the present study provides a novel look at A. carolinensis and establishes it as a strong candidate for further studies of variation and adaptation over a large range. 相似文献
19.
Bergmann's rule predicts larger body sizes in species living in higher latitudes and altitudes. This rule appears to be valid for endotherms, but its relevance to ectotherm vertebrates has largely been debated. In squamate reptiles (lizards and snakes), only one study, based on Liolaemus species of the boulengeri clade, has provided phylogenetic evidence in favour of Bergmann's clines. We reassessed this model in the same lizard clade, using a more representative measure of species body size and including a larger number of taxa in the sample. We found no evidence to support Bergmann's rule in this lineage. However, these non-significant results appear to be explained only by the inclusion of further species rather than by a different estimation of body size. Analyses conducted on the 16 species included in the previous study always revealed significant relationships between body size and latitude-altitude, whereas, the enlarged sample always rejected the pattern predicted by Bergmann's rule. 相似文献
20.
Adam D. Gordon 《International journal of primatology》2006,27(1):63-105
Previous researchers found positive scaling of body size and sexual size dimorphism (SSD) in primates, known as Rensch's rule. The pattern is present in Haplorhini, but absent in Strepsirhini. I found that positive evolutionary correlations between size and SSD drive positive scaling relationships within Haplorhini as a whole and Platyrrhini, Cercopithecinae, Colobinae, and Hominoidea individually at the generic level and higher, but that evolutionary correlations within genera in these clades are often nonsignificant or negative. I suggest that positive evolutionary correlations result from greater change in male than in female size, usually because of sexual selection acting on polygynous populations. I suggest that negative evolutionary correlations result from greater change in female size, owing to either natural selection or, in Callitrichidae, sexual selection acting on polyandrous populations. The high incidence of negative evolutionary correlations within Haplorhini suggests a relatively large influence of natural selection on SSD, at least with regard to differences in SSD between congeners. I propose two possible explanations for the difference in intrageneric and supergeneric evolutionary patterns: 1) natural selection is a relatively weak force for modifying SSD and has a noticeable effect only when one compares related species experiencing similar levels of sexual selection, and 2) natural selection is a relatively strong force for modifying SSD but is less likely than sexual selection to affect higher level taxonomic comparisons noticeably because of the cumulative effect over time of marginal differences in mortality rates of these two types of selection. I discuss types of data required to test these explanations and implications for reconstructing fossil behavior. 相似文献