首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abundance change with increasing distance from the native forest in adjacent habitat types in Santa Maria Island, the Azores. Arthropods were sampled in four 150 m long transects in each habitat type. Arthropods were identified to species level and classified as Azorean endemic, single-island endemic (SIE), native, or introduced. The native forest had the highest values for species richness of Azorean endemics, SIEs and natives; and also had highest values of Azorean endemic diversity (Fisher’s alpha). In contrast, the intensive pasture had the lowest values for endemic and native species richness and diversity, but the highest values of total arthropod abundance and introduced species richness and diversity. Arthropod community composition was significantly different between the four habitat types. In the semi-natural pasture, the number of SIE species decreased with increasing distance from the native forest, and in the exotic forest the abundance of both Azorean endemics and SIEs decreased with increasing distance from the native forest. There is a gradient of decreasing arthropod richness and abundance from the native forest to the intensive pasture. Although this study demonstrates the important role of the native forest in arthropod conservation in the Azores, it also shows that unmanaged exotic forests have provided alternative habitat suitable for some native species of forest specialist arthropods, particularly saproxylic beetles.  相似文献   

2.
Most habitats in the Azores have undergone substantial land-use changes and anthropogenic disturbance during the last six centuries. In this study we assessed how the richness, abundance and composition of arthropod communities change with: (1) habitat type and (2) the surrounding land-use at different spatial scales. The research was conducted in Terceira Island, Azores. In eighty-one sites of four different habitat types (natural and exotic forests, semi-natural and intensively managed pastures), epigaeic arthropods were captured with pitfall traps and classified as endemic, native or introduced. The land-use surrounding each site was characterized within a radius ranging from 100 to 5000 m. Non-parametric tests were used to identify differences in species richness, abundance and composition between habitat types at different spatial scales. Endemic and native species were more abundant in natural forests, while introduced species were more abundant in intensively managed pastures. Natural forests and intensively managed pastures influenced arthropod species richness and composition at all spatial scales. Exotic forests and semi-natural pastures, however, influenced the composition of arthropod communities at larger scales, promoting the connectivity of endemic and native species populations. Local species richness, abundance and composition of arthropod communities are mostly determined by the presence of nearby natural forests and/or intensively managed pastures. However, semi-natural pastures and exotic forests seem to play an important role as corridors between natural forests for both endemic and native species. Furthermore, exotic forests may serve as a refuge for some native species.  相似文献   

3.
The largest standardised database available to date for arthropods in native forests of the Azores archipelago was used to determine the minimum optimal set of native forest fragments needed to accomplish four different targets of species occurrence (presence-absence) and abundance (20, 50 and 80%) using different groups of arthropods and all data combined. The results showed that occurrence and 20% abundance targets gave similar optimal solutions for most of the groups considered. At least one fragment on each of the seven studied islands was required to accomplish any occurrence and abundance target. To achieve 80% of abundance for all species, all fragments were necessary and to guarantee 50% of the overall abundance of endemics, 17 out of 18 native forests were needed. A suggestion is made to apply a measure of biotic integrity related to disturbance to select, among alternative optimal solutions, the set of areas that will help to guarantee the viability of populations. Some guidelines for the selection of priority areas for conservation in the Azores are presented.  相似文献   

4.
In order to characterize the main areas of natural forest on Terceira Island (Azores), some of the most interesting European forests due to their rich and diverse flora of endemic as well as relict species, six forest stands were studied and their flora inventoried using 226 randomized quadrats, which revealed one anthocerote, 64 liverworts, 41 mosses and 16 macrolichen taxa. The alpha-diversity of the samples is particularly species-rich, some quadrats (30 × 30 cm) including more than 25 bryophyte species. A quantitative analysis of the vegetationenvironment relationships consistently showed that the distributions of the native forest bryophytes and lichens of Terceira are governed by a complex set of factors related to water availability, the status of the substrata and the influences of the vascular plant community. Considering the generally high values of the Sørensen indices and the low number of specialist species found with Lloyd’s index, the differences are more in terms of dominance of species than in terms of species composition. In fact, substratum type was clearly important in the DCA and TWINSPAN analysis using species cover abundance values, largely explaining the distribution of bryophyte species between Juniperus brevifolia (Seub.) Antoine and Laurus azorica (Seub.) Franco bark. The eight putative plant community type groupings achieved with these multivariate methods were able to elucidate some major bryophyte – substratum relationships, that had not previously been considered and they offer a framework for future research.  相似文献   

5.
Dornelas M  Connolly SR 《Ecology letters》2008,11(10):1008-1016
Species abundance distributions are an important measure of biodiversity and community structure. These distributions are affected by sampling, and alternative species-abundance models often make similar predictions for small sample sizes. Very large samples reveal the relative abundances of rare species, and thus provide information about species relative abundances that small samples cannot. Here, we present the species-abundance distribution for a sample of > 40,000 coral colonies at a single site, exceeding existing samples of coral local assemblages by over an order of magnitude. This abundance distribution is multimodal when examined on a logarithmic scale. Four different model selection procedures all indicate that the underlying community abundance distribution has at least three modes. We show that the multiple modes are not caused by mixtures of species with different habitat preferences. However, spatial aggregation partially explains our results. We inspect published work on species abundance distributions, and suggest that multimodality may be a common feature of large samples.  相似文献   

6.
1. The positive abundance-occupancy and abundance-variance relationships are two of the most widely documented patterns in population and community ecology. 2. Recently, a general model has been proposed linking the mean abundance, the spatial variance in abundance, and the occupancy of species. A striking feature of this model is that it consists explicitly of the three variables abundance, variance and occupancy, and no extra parameters are involved. However, little is known about how well the model performs. 3. Here, we show that the abundance-variance-occupancy model fits extremely well to data on the abundance, variance and occupancy of a large number of arthropod species in natural forest patches in the Azores, at three spatial extents, and distinguishing between species of different colonization status. Indeed, virtually all variation about the bivariate abundance-occupancy and abundance-variance relationships is effectively explained by the third missing variable (variance in abundance in the case of the abundance-occupancy relationship, and occupancy in the case of the abundance-variance relationship). 4. Introduced species tend to exhibit lower densities, less spatial variance in these densities, and occupy fewer sites than native and endemic species. None the less, they all lie on the same bivariate abundance-occupancy and abundance-variance, and trivariate abundance-variance-occupancy, relationships. 5. Density, spatial variance in density, and occupancy appear to be all the things one needs to know to describe much of the spatial distribution of species.  相似文献   

7.
为解释塔里木荒漠河岸林群落构建和物种多度分布格局形成的机理, 本文以塔里木荒漠河岸林2个不同生境(沙地、河漫滩) 4 ha固定监测样地为研究对象, 基于两样地物种调查数据, 采用统计模型(对数级数模型、对数正态模型、泊松对数正态分布模型、Weibull分布模型)、生态位模型(生态位优先占领模型、断棍模型)和中性理论模型(复合群落零和多项式模型、Volkov模型)拟合荒漠河岸林群落物种多度分布, 并用K-S检验与赤池信息准则(AIC)筛选最优拟合模型。结果表明: (1)随生境恶化(土壤水分降低), 植物物种多度分布曲线变化减小, 群落物种多样性、多度和群落盖度降低, 常见种数减少。(2)选用的3类模型均可拟合荒漠河岸林不同生境群落物种多度分布格局, 统计模型和中性理论模型拟合效果均优于生态位模型。复合群落零和多项式模型对远离河岸的干旱沙地生境拟合效果最好; 对数正态模型和泊松对数正态模型对洪水漫溢的河漫滩生境拟合效果最优; 中性理论模型与统计模型无显著差异。初步推断中性过程在荒漠河岸林群落构建中发挥着主导作用, 但模型拟合结果只能作为推断群落构建过程的必要非充分条件, 不能排除生态位过程的潜在作用。  相似文献   

8.
Heino J 《Oecologia》2008,157(2):337-347
The interspecific relationship between local abundance and regional distribution, as well as the occupancy frequency distribution, are widely studied topics in macroecology. A positive abundance-occupancy relationship has been found in a majority of studies, and satellite species modes are typically dominant in occupancy frequency distributions. However, there are a number of exceptions to these "general" findings, and only a few studies have examined these patterns and their temporal variability in stream organisms. I examined both abundance-occupancy relationships and occupancy frequency distributions in stream insects in a boreal drainage system over six consecutive years. I found that the positive interspecific abundance-occupancy relationship was highly stable temporally, with coefficients of determination ranging from 0.25 to 0.47 over the years. There were no strong differences in the strength and slope of the abundance-occupancy relationship between non-predatory and predatory insect species in each year. Temporally stable abundance-occupancy relationships were paralleled by among-year patterns in both abundance and occupancy, with locally abundant and widely distributed species remaining locally abundant and widely distributed over the years, while locally uncommon and regionally rare species showed the opposite. Occupancy frequency distributions were strongly right-skewed, mirroring the dominance of the left-most satellite mode of regionally rare species. That the abundance-occupancy relationship, species' abundances and distributions, as well as the dominance of satellite species in occupancy frequency distribution were temporally stable suggest that niche-based models are strong candidates for explaining these patterns in stream insects. By contrast, metapopulation-based models that predict clear temporal variability in species' abundance and occupancy, as well as bimodal occupancy frequency distributions, are less plausible candidates for explaining the observed patterns. The present findings are the opposite to those in some terrestrial studies, but they are in agreement with other terrestrial studies and with a few previous studies on stream organisms.  相似文献   

9.
Human disturbance threatens and modifies forest ecosystems worldwide. Previous studies have investigated the effects of human impact on local bird communities in disturbed forests, but we still lack information on how bird species richness and ecological processes respond to different forest modifications present at a landscape scale. In a heterogeneous South African landscape, we chose six types of indigenous scarp forest, differing in the intensity of human disturbance: continuous natural forests and natural forest fragments in nature reserves, forest fragments in eucalyptus plantations, fragments in the agricultural matrix, forest gardens and secondary forests in game reserves. In 36 study sites, we investigated the bird community using point counts and observed the seed removal of birds at the native tree species Celtis africana. Species richness did not differ among the forest types, but abundance varied significantly with most birds observed in fragments in the agricultural matrix, forest gardens, and secondary forests. The higher bird abundance in these forests was mainly due to forest generalists, shrubland and open country species whereas forest specialists were rarely present. Changes in species composition were also confirmed by multivariate analysis which clearly separated bird communities by forest type. Frugivore abundance in C. africana was highest in natural forest fragments, fragments in the agricultural matrix, forest gardens and secondary forests. The same trend was found for the estimated total number of fruits removed per C. africana tree, though the differences among forest types were not significant. Consequently, modified forests seem to maintain important ecological functions as they provide food sources for generalist species which may, due to their mobility, enhance natural plant regeneration. However, we could show that protected forest habitats are important refugees for specialist species sensitive to human disturbance.  相似文献   

10.
Non-indigenous plant species have been frequently reported as successful invaders in island environments, changing plant community composition and structure. This is the case of the sweet pittosporum (Pittosporum undulatum), native from Australia, which is one of the most successful plant invaders in the Azores archipelago. Data extracted from recent forestry inventories were used to model and map the potential distribution of P. undulatum in São Miguel, the larger island of the Azores. Current distribution of P. undulatum is related to climate, altitude and some human activity effects. Further analysis of the areas under risk of invasion showed that protected areas are under potential threat, although only a few native forest remnants seem to be threatened due to future expansion of P. undulatum, since the current distribution of these native communities has been reduced due to clearing and competition with invasive plants. We discuss the threats that any further expansion of the species will represent for low-altitude native forests, as well as the utility of species distribution models in the assessment of the areas under risk of invasion.  相似文献   

11.
Non-native species have invaded habitats worldwide, greatly impacting the structure and function of native communities and ecosystems. To better understand mechanisms of invasion impacts and how to restore highly impacted and transformed ecosystems, studies are needed that evaluate invader effects on both biotic communities and structural characteristics. On Santa Cruz Island in Galápagos we compared biotic (plant species richness, diversity, and community composition) and structural (canopy openness, forest height, and leaf litter) characteristics of a relic forest dominated by an endemic and highly threatened tree and a forest dominated by an invasive tree. The forests are located within the historical distribution of the endemic tree, which now occupies only 1% of its original extent. We found that the invaded forest had 42% lower native plant species richness and 17% less plant diversity than the endemic tree dominated forest. Additionally, with the invader there was 36% greater non-native plant species richness, 37% higher non-native plant diversity, and highly dissimilar plant composition when compared to the endemic-dominated forest. Additionally, the invaded forest had a more open and taller tree canopy and greater leaf litter cover than native forest. The presence of the invasive tree and the associated forest structural changes were the primary factors in models that best explained higher non-native diversity in the invaded forest. Our correlational results suggest that an invasive tree has significantly altered plant assemblage and forest structural characteristics in this unique ecosystem. Experiments that remove the invader and evaluate native plant community responses are needed to identify thresholds for practical restoration of this threatened and biologically unique native forest.  相似文献   

12.
Agricultural landscapes provide financial livelihoods for farming communities in rural areas. However, such agroenvironments can significantly impact the local floral biodiversity and introduce harmful invasive species to the ecosystem. Despite the prominence of plantations throughout the tropics, their effects on local flora are limited to only a few specific cash crops and geographical regions. Here, we compared the species richness and structural diversity of vegetation in natural forest fragments and three types of vanilla plantation within the Sava region of north-east Madagascar ranging from those within or adjacent to existing forests, to intensively cultivated plantations. We recorded data on plant species abundance, diameter at breast height and canopy cover within multiple sites of each habitat. We used abundance data to calculate species richness indices, and we compared these metrics between habitats. Forested habitats contained a significantly higher floral species richness, structural diversity and more endemic and regionally native species than nonforested, anthropogenic vanilla plantations. However, our results suggest that the high floral species richness and structural diversity of natural forests can be partially achieved in vanilla plantations, depending on the site's management regime; traditionally managed vanilla plantations located close to natural forests can support diverse floral communities. These encouraging findings for plant conservation and sustainable agroforestry in Madagascar suggest that that newly created vanilla plantations and already existing nonforested plantations should endeavour to follow the more traditional forested approach to enhance the future sustainability and promote floristic diversity.  相似文献   

13.
Human activities often cause habitat fragmentation and how forest fragments affect species range distributions has implications for ecology and conservation. However, few studies have considered communities within the same landscape. Here, we analyzed metacommunity structure to determine the range distributions for species in four taxonomic groups (amphibians, birds, social wasps, and trees) in a patchy landscape of semi‐deciduous Atlantic forest in southwestern Brazil. Although trees are a key component of the environment for animals in forested patches, the ranges of bird, wasp, and amphibian species did not change in concert with the species ranges of trees. The species ranges of amphibians and social wasps were unaffected by fragmentation gradients and exhibited independent distribution patterns (i.e., random structure). In contrast, birds and trees exhibited range turnover along different fragmentation gradients, indicating that species show idiosyncratic responses to abiotic factors (i.e., Gleasonian structure). For birds, some less‐resilient species occurred only in fragments with a large area of native vegetation at a radius of 5 km from the center of the sampled forest fragments, whereas other more stress‐tolerant species occurred only in sites with small areas of native vegetation. For trees, some later succession species (e.g., animal‐dispersed seeds) occurred only in fragments with high connectivity, whereas earlier‐recruiting species (e.g., wind‐dispersed seeds) occurred in fragments with low connectivity. Thus, determining the effects of human‐modified landscapes on species range distributions, even within the same landscape, might not be a trivial task.  相似文献   

14.
The Atlantic Forest (AF) is one of the five most threatened and megadiverse world hotspots. It is arguably the most devastated and highly threatened ecosystem on the planet. The vast scope of habitat loss and extreme fragmentation in the AF hotspots has left intact very few extensive and continuous forested fragments. We compared bird assemblages between small (<100 ha) and large (>6,000 ha) forest remnants, in one of the largest AF remnants in Argentina. We performed 84 point-counts of birds in four large fragments (LF) and 67 points in 25 small fragments (SF). We recorded 4,527 bird individuals belonging to 173 species; 2,632 belonging to 153 species in LF and 1,897 in 124 species in SF. Small fragments suffered a significant loss of bird richness, mainly forest dependent species, but the birds abundance did not decrease, due to an increase in abundance of forest independent and semi-dependent bird species (edge and non forest species) that benefit from forest fragmentation. The bird guilds of frugivores, undestory, terrestrial and midstory insectivores, nectarivores and raptors, and the endemic species of AF were area sensitive, decreasing significantly in richness and abundance in the SF. Terrestrial granivores were the only guild positively affected by forest fragmentation, containing mainly edge species, which forage in open areas or borders including crops. Our first observations on fragmentation effects on bird assemblages in the southernmost Argentinean Atlantic Forests did not validate the hypothesis on pre-adaptation to human disturbances in the bird communities of AF. On the contrary, we observed that forest dependent, endemic and several sensitive bird guilds were strongly affected by fragmentation, putting in evidence the vulnerability to the fragmentation process and the necessity to conserve large remnants to avoid reduction of the high biodiversity of AF birds.  相似文献   

15.
Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.  相似文献   

16.
Patch size, isolation, and vegetation structure are expected to strongly affect species persistence in fragmented landscapes, particularly for those with <30% of native habitat remaining. Those influences should be modulated by species characteristics, resulting in complex relationships. In order to investigate how species, habitat structure and landscape factors are related and how they affected species persistence, we studied bird communities in a fragmented Atlantic Forest region. Patch size strongly affected species richness and population abundances. However, some functional groups were more affected than others, particularly endemic and understory insectivores, species that are near the limits of their geographical distribution, those using few forest types, and those with their center of abundance in high altitude tropical forests. The effect of vegetation structure was mainly at the species level, reflecting specific responses to habitat quality. The importance of landscape variables varies according to the species group. For the most affected ones, which usually have low dispersal capacity, patch size and quality were the most relevant factors, whereas patch isolation was associated with the richness of groups with more generalist species. This pattern is due to the limited structural connectivity in the study region, composed of low matrix permeability (e.g. pastures and sugar cane), which isolate the most affected species, making them more dependent on local factors. In such a fragmented landscape, the largest patches should be prioritized for conservation purposes, as they aggregate the most vulnerable species and present the highest alpha diversity. Landscape management, as such, should also reconnect large fragments through corridors or matrix improvements, promoting better conditions for long-term persistence of the most affected species.  相似文献   

17.
Habitat loss and fragmentation are major ecological forces threatening animal communities across the globe. These issues are especially true in Madagascar, where forest loss is ongoing. We examined the effects of forest fragmentation on the distribution and abundance of sympatric, endemic gray, and golden-brown mouse lemurs (Microcebus murinus and Microcebus ravelobensis), the endemic western tuft-tailed rat (Eliurus myoxinus), and the invasive black rat (Rattus rattus) in two regions in northwestern Madagascar. We used systematic capture procedures in 40 forest fragments and four continuous forest sites which differed in size, shape, and degree of isolation. With a trapping effort of 11,567 trap nights during two dry seasons (2017–2018), we captured 929 individuals (432 M. ravelobensis, 196 M. murinus, 116 E. myoxinus, and 185 R. rattus). We examined the influence of study region, forest type (fragment vs. continuous), forest size, forest shape, the proportion of 50-m forest edge and distance to continuous forest on the abundance and interaction of the four species. Responses to fragmentation differed strongly between species, but no interaction could be detected between the abundance of the different species. Thus competition within and between native and invasive species may not be regulating abundances in these regions. On the contrary, the abundance of M. ravelobensis and E. myoxinus differed significantly between study regions and was negatively affected by fragmentation. In contrast, there was no evidence of an impact of fragmentation on the abundance of M. murinus. Finally, the invasive R. rattus responded positively to the increasing distance to the continuous forest. In conclusion, the response of small Malagasy mammals to forest fragmentation varies largely between species, and fragmentation effects need to be examined at a species-specific level to fully understand their ecological dynamics and complexity.  相似文献   

18.
Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon‐based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above‐ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red‐listed species. We found that increasing fragment size has a positive relationship with above‐ground carbon stock and with abundance of IUCN Red‐listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red‐listed species abundance. These resulted in positive congruence between carbon stocks and Red‐listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer‐grained assessments in fragmented landscapes rather than using averaged coarse‐grained cells.  相似文献   

19.
The sizes of organisms are determined by their interactions with their environment and related ecological and evolutionary processes. Recent studies of body size distributions across communities show evidence for multimodality. The multiple modes were originally explained as a consequence of textural discontinuities in habitat structure. Because communities consist of species that are drawn from lineages, body size patterns within lineages will affect those that are expressed in communities. We used a cellular automation model to argue that multimodality in body sizes within lineages can arise from a few fundamental evolutionary mechanisms alone. We tested the hypothesis using body size data for 138 fish genera and found strong support for the idea that evolution structures body size distributions. The results suggest, first, that we should expect the distribution of body sizes within lineages to be multimodal and second, that a coherent theory of community body size distributions will need to combine both evolutionary and ecological perspectives. Received 28 January 2002; accepted 21 March 2002  相似文献   

20.
Human activities can increase or decrease risks of acquiring a zoonotic disease, notably by affecting the composition and abundance of hosts. This study investigated the links between land use and infectious disease risk in northeast Madagascar, where human subsistence activities and population growth are encroaching on native habitats and the associated biota. We collected new data on pathogenic Leptospira, which are bacteria maintained in small mammal reservoirs. Transmission can occur through close contact, but most frequently through indirect contact with water contaminated by the urine of infected hosts. The probability of infection and prevalence was compared across a gradient of natural moist evergreen forest, nearby forest fragments, flooded rice and other types of agricultural fields, and in homes in a rural village. Using these data, we tested specific hypotheses for how land use alters ecological communities and influences disease transmission. The relative abundance and proportion of exotic species was highest in the anthropogenic habitats, while the relative abundance of native species was highest in the forested habitats. Prevalence of Leptospira was significantly higher in introduced compared to endemic species. Lastly, the probability of infection with Leptospira was highest in introduced small mammal species, and lower in forest fragments compared to other habitat types. Our results highlight how human land use affects the small mammal community composition and in turn disease dynamics. Introduced species likely transmit Leptospira to native species where they co-occur, and may displace the Leptospira species naturally occurring in Madagascar. The frequent spatial overlap of people and introduced species likely also has consequences for public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号