首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We carried out experiments that considered the feeding, phenology, and biocontrol potential of dogbane beetle, Chrysochus auratus, on spreading dogbane, Apocynum androsaemifolium, a native perennial weed in lowbush blueberry (Vaccinium angustifolium). In no-choice host-feeding experiments, adult beetles did not feed upon common milkweed (Asclepias syriaca), periwinkle (Vinca minor), wild raisin (Viburnum cassenoides), and lowbush blueberry, all plants related to spreading dogbane or found around lowbush blueberry fields. In a field experiment, significant decreases in spreading dogbane total and foliar weight occurred at a density of 16 beetles per ramet, but not at lower beetle densities. In our Nova Scotia (NS) field sites, beetles were present for 8–12 weeks, beginning in late June or early July (225–335 growing degree days, GDD). Beetle abundance peaked at 4–7 beetles/m2 and occurred at 357–577 GDD, which temporally coincides with the incidence of mature spreading dogbane plants in the field. The results suggest that although inundations of C. auratus could cause significant defoliation of spreading dogbane, natural populations of the beetle probably could not satisfactorily suppress development of this weed as a stand-alone control tactic. Conservation and augmentation of C. auratus populations should nonetheless be encouraged in integrated management programs for spreading dogbane.  相似文献   

2.
Pollen beetles, Meligethes spp. (Coleoptera: Nitidulidae), are among the most damaging pests of oilseed rape (Brassica napus L.). Increasing populations of pyrethroid‐resistant pollen beetles coupled with the prohibition of synthetic pest control products in organic farming means that other direct control methods are needed. A laboratory study was therefore conducted to evaluate the effect of natural products, combinations of natural products and additives as well as natural and synthetic insecticides on mortality of pollen beetles. In addition, field trials under both integrated and organic production were conducted to evaluate the efficacy of six natural products, nine combinations of natural products, two synthetic insecticides (integrated‐production trials only), two natural insecticides and two additives to reduce pollen beetles. The laboratory trial, using both a curative and preventive approach, showed that two of the eight natural products (lavender oil and stone meal) caused a mortality of over 98% within the first day of application. The other natural products were only partially effective compared with the untreated control. In the field trials, the natural products reduced the number of pollen beetles 1 day after application compared with the untreated control in both trial years and production systems. Promising substances were stone meal, Silico‐Sec and liquid manure. Nevertheless, the efficacy was not consistent, and no effect on oilseed rape yield was observed. In spite of this, these products have the potential to control pollen beetles under field conditions with comparable effects to synthetic insecticides. Further research should therefore focus on timing and frequency of applications as well as on the formulation of the natural products to increase the persistency of the products under field conditions.  相似文献   

3.
The recent arrival of Drosophila suzukii, an invasive pest of soft‐skinned fruit with a wide host range, has resulted in increased production costs for growers and the need for additional insecticide applications each growing season. There are few effective organic insecticides for D. suzukii, and insecticide use in conventional farms may be disruptive to natural enemies, suggesting a need for effective biological control to combat D. suzukii. Commercially available natural enemies were evaluated for their potential use in augmentative releases, including: the predators Orius insidiosus and Dalotia coriaria; the entomopathogenic fungi Metarhizium anisopliae, Beauveria bassiana and Paecilomyces fumosoroseus; and the entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema feltiae and S. carpocapsae. This suite of natural enemies was chosen to target D. suzukii adults as well as larvae in hanging or dropped fruit. Of the cultured fungal strains tested, only M. anisopliae significantly decreased D. suzukii survival, but it had low residual activity and no effect on D. suzukii fecundity. O. insidiosus decreased D. suzukii survival in simple laboratory arenas but not on potted blueberries or bagged blueberry branches outdoors. D. coriaria did not decrease D. suzukii survival in infested blueberries in simple laboratory arenas. The nematodes tested showed low infection rates and were not able to affect D. suzukii survival. Although this suite of natural enemies showed limited ability to suppress D. suzukii under the tested conditions, these and related natural enemies are present as part of the endemic natural enemy community in agricultural fields, where they may contribute to D. suzukii suppression.  相似文献   

4.
This study aimed to develop a semiochemical‐baited trapping system to monitor the populations of small banded pine weevil, Pissodes castaneus, a serious pest in Pinus sylvestris young stands that are weakened by biotic and abiotic factors. The scope of the work included the development of a dispenser for compounds (ethanol and α‐pinene) emitted by P. sylvestris and the pheromones of P. castaneus: grandisol and grandisal. Additionally, the effectiveness of beetle catches in different types of traps (unitrap, cross‐unitrap and long and short pipe traps) baited with a dispenser was assessed. The olfactometric studies showed that most of the newly hatched beetles that had not fed were attracted by a mixture of grandisol and grandisal. However, in the group of feeding beetles, half were attracted by a mixture of ethanol and α‐pinene. These results indicated that both pheromones and α‐pinene plus ethanol should be useful for capturing P. castaneus beetles. In the field trials, the highest efficiency was found in baited unitraps that caught up to several hundred P. castaneus beetles, while the baited cross‐unitraps caught up to a few dozen beetles. No insects were found in either type of baited pipe trap or in any of the unbaited control traps. The baited unitraps and cross‐unitraps also collected, with varied intensity, Hylobius abietis beetles, a serious pest of reforestations. These results indicate the possibility of using a unitrap baited with a 4‐component attractant for monitoring P. castaneus in integrated pest management for the protection of young forests.  相似文献   

5.
In just a few years, the Asian fly Drosophila suzukii has invaded several continents and has become a very serious pest of many fruit crops worldwide. Current control methods rely on chemical insecticides or expensive and labour‐intensive cultural practices. Classical biological control through the introduction of Asian parasitoids that have co‐evolved with the pest may provide a sustainable solution on condition that they are sufficiently specific to avoid non‐target effects on local biodiversity. Here, we present the first study on the development of three larval parasitoids from China and Japan, the Braconidae Asobara japonica and the Figitidae Leptopilina japonica and Ganaspis sp., on D. suzukii. The Asian parasitoids were compared with Leptopilina heterotoma, a common parasitoid of several Drosophilidae worldwide. The three Asian species were successfully reared on D. suzukii larvae in both, blueberry and artificial diet, in contrast to L. heterotoma whose eggs and larvae were encapsulated by the host larvae. All parasitoids were able to oviposit one day after emergence. Asobara japonica laid as many eggs in larvae feeding in blueberry as in artificial diet, whereas L. heterotoma oviposited more in larvae on the artificial diet and the Asian Figitidae oviposited more in larvae feeding on blueberry. Ganaspis sp. laid very few eggs in larvae in the artificial diet, suggesting that it may be specialized in Drosophila species living in fresh fruits. These data will be used for the development of a host range testing to assess the suitability of Asian parasitoids as biological control agents in invaded regions.  相似文献   

6.
The Asian multicoloured ladybird beetle, Harmonia axyridis, is utilized as a major natural enemy of aphids in the field, greenhouses and orchards. However, it has been looked as invasive predator distributing in worldwide. To refine integrated pest management (IPM) against aphids, it is important to evaluate the effects of insecticides on physiology and behaviour of the high adapted predators. Beta‐cypermethrin, a broad‐spectrum insecticide, not only kills aphids at lethal concentrations but also affects natural enemy of aphids. In our study, the age‐stage, two‐sex life table was used to evaluating sublethal effects of beta‐cypermethrin on the predatory ladybird beetle H. axyridis. In the parent generation, the pre‐oviposition period of H. axyridis was significantly shortened (8.93 days) after exposure to LC5 beta‐cypermethrin (5% lethal concentration) as compared with control (10.06 days). However, the oviposition period was significantly longer (46.17 days instead of 43.90 days), and fecundity (eggs per female) was significantly increased by 49.64% when compared with control. In the F1 generation, the length of the juvenile stage was not affected, but the oviposition period increased significantly (38.19 days compared to 31.39 days in the control). This positive effect was translated to the fecundity that increased significantly by 62.27% as compared with control. According to the life‐table analysis, the intrinsic rate of increase (rm) was significantly higher in treatment (0.140 per day) than that in the control (0.123 per day). In addition, the net reproductive rate (R0) increased significantly by 91.53%. These results would be useful in assessing the overall effects of beta‐cypermethrin on H. axyridis and even for discussing the ecological mechanism of the unexpected extension of H. axyridis during IPM programme.  相似文献   

7.
Agrilus mali Matsumara (Coleoptera: Buprestidae) is a wood‐boring beetle distributed to eastern China that occasionally injures apple species. However, this wood‐boring beetle is new to the wild apple forests (Malus sieversii) of the Tianshan Mountains (western China) and has caused extensive tree mortality. The development of a biological control program for these wild apple forests is a high priority that requires exploration of the life cycle, DNA barcoding and taxonomic status of A. mali. In this study, to determine the diversity of invasive beetles, a fragment of the mitochondrial cytochrome oxidase gene was analyzed. Based on the results, beetles from Gongliu and Xinyuan counties of Xinjiang were identical but differed from those in the apple nursery of Gongliu by a single‐nucleotide substitution. We summarize the taxonomic status, relationships, and genetic distances of A. mali among other Agrilus species using the Tajima‐Nei model in maximum likelihood phylogeny. Analysis revealed that A. mali was closely related to Agrilus mendax and both belong to the Sinuatiagrulus subgenus. The life cycle of A. mali was investigated based on a monthly regular inspection in the wild apple forests of Tianshan. Similar to congeneric species, hosts are injured by larvae of A. mali feeding on phloem tissue, resulting in serpentine galleries constructed between bark and xylem that prevent nutrient transport and leading to tree mortality. Future studies will focus on plant physiological responses to the invasive beetles and include surveys of natural enemies for a potential classical biological control program.  相似文献   

8.
Chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is a major, economically important, and recent invasive pest of strawberries and other horticultural crops in United States. Several conventional insecticides are used for S. dorsalis management, and resistance development threatens loss of few available tools. Hence, our objectives were to: (1) determine the susceptibility of S. dorsalis to commonly used conventional insecticides: spinetoram, acetamiprid, cyantraniliprole and bifenthrin, and (2) establish LC50 and LC90 dosages for spinetoram against S. dorsalis. Sampling of S. dorsalis populations was conducted twice in seven strawberry fields in Florida during the strawberry field season between 2019 and 2020. Leaf-disc bioassays were performed with field collected populations along with a susceptible 2-year-old laboratory culture of S. dorsalis. Overall, at highest recommended rate the percent mortality of late season S. dorsalis populations from five out of seven collection sites was lower (~41%) than average mortality observed with early season populations (~72%). Populations from at least four out of seven sampling sites exhibited significantly lower mortality than the laboratory susceptible culture in late season. The LC50 and LC90 values for spinetoram for the susceptible laboratory population were 0.026 and 8.64 ppm, respectively. On the other hand, LC50 values of field collected populations to spinetoram varied with resistance ratios ranging from 6 to 269 fold as compared against the laboratory strain. Our results suggest that susceptibility of S. dorsalis to commonly used insecticides in strawberries varies significantly between early and late season populations within the same crop season. The efficacy of bifenthrin against S. dorsalis was particularly low (~ reduced to half in late season), especially among field collected populations. Our results indicate an urgent need to incorporate other pest management strategies, as well as effective rotation programs to reduce selection for resistance among populations of S. dorsalis in strawberry production.  相似文献   

9.
Various organisms emit malodorous secretions against competitors, and the potential use of these secretions in pest management should be investigated. For example, some ant species feed on similar resources as dung beetles, which might have led to counter chemical defences in dung beetles. We tested whether pygidial secretions of the dung beetle Canthon smaragdulus (Fabricius) (Coleoptera: Scarabaeidae, Scarabaeinae) alter the locomotor behaviour of the exotic urban pest ant Tapinoma melanocephalum (Fabricius) (Hymenoptera: Formicidae), specifically whether these secretions repel those ants. We also tested whether the disturbance in the locomotor behaviour of T. melanocephalum increases with the amount of pygidial secretion. We found that individual T. melanocephalum displayed changes in their locomotor behaviour when exposed to pygidial secretions of coupled dung beetles, single males, and single females. Additionally, the pygidial secretions from male and female dung beetles could repel ants. The change in the locomotor behaviour of T. melanocephalum increased with the amount of pygidial secretion. Our results suggest that the pygidial secretions of dung beetles have potential as a biological repellent of T. melanocephalum. Hence, pygidial secretions from dung beetles may be used in the future for the development of urban pest management strategies.  相似文献   

10.
The fall‐webworm (FWW), Hyphantria cunea, is a highly polyphagous insect pest that is native to North America and distributed in different countries around the world. To manage this insect pest, various control methods have been independently evaluated in the invaded areas. Some of the control methods have been limited to the laboratory and need further study to verify their effectiveness in the field. On the other hand, currently, integrated pest management (IPM) has become a promising ecofriendly insect pest management option to reduce the adverse effect of insecticides on the environment. The development of an IPM for an insect pest must combine different management options in a compatible and applicable manner. In the native areas of the insect pests, there are some recommended management options. However, to date, there is no IPM for the management of the FWW in the newly invaded areas. Therefore, to develop an IPM for this insect pest, compilation of effective management option information is the first step. Thus, believing in the contribution of an IPM to the established management strategies, the chemical, biological, natural enemy, sex pheromone, and molecular studies regarding this insect were reviewed and potential future research areas were delineated in this review study. Therefore, using the currently existing management options, IPM development for this insect pest should be the subject of future research in the newly invaded areas.  相似文献   

11.
12.
Marking biological control agents facilitates studies of dispersal and predation. This study examines the effect of a biological solvent, dimethyl sulfoxide (DMSO), on retention of immunoglobulin G (IgG) protein solutions applied to Diorhabda carinulata (Desbrochers) (Coleoptera: Chrysomelidae), an important biological control agent of saltcedar, either internally by feeding them protein‐labeled foliage or externally by immersing them in a protein solution. In addition, we determined whether internally or externally marked DMSO‐IgG labels could be transferred via feeding from marked D. carinulata to its predator, Perillus bioculatus (Fabricius) (Heteroptera: Pentatomidae). The presence of rabbit and chicken IgG proteins was detected by IgG‐specific enzyme‐linked immunosorbent assays (ELISA). DMSO‐IgG treatments showed greater label retention than IgG treatments alone, and this effect was stronger for rabbit IgG than for chicken IgG. Fourteen days after marking, beetles immersed in rabbit IgG showed 100% internal retention of label, whereas beetles immersed in chicken IgG showed 65% internal retention. Immersion led to greater initial (time 0) label values, and longer label retention, than feeding beetles labeled foliage. The DMSO‐IgG label was readily transferred to P. bioculatus after feeding on a single marked prey insect. This investigation shows that addition of DMSO enhances retention of IgG labels, and demonstrates that protein marking technology has potential for use in dispersal and predator–prey studies with D. carinulata. Moreover, our observation of P. bioculatus feeding on D. carinulata is, to our knowledge, a new predator–prey association for the stink bug.  相似文献   

13.
There is an increasing awareness that vegetation diversity can affect herbivore and natural enemy abundance and that plants can play a major role in directly manipulating natural enemy abundance for protection against herbivore attacks. Using data from cassava fields, we aimed at (i) testing the capacity of the predatory mite Typhlodromalus aripo to control the herbivorous mite Mononychellus tanajoa in a chemical exclusion trial; and (ii) testing, based on the differential preference by T. aripo for cassava cultivars, how combinations of two morphologically different cassava cultivars with differential suitability to the predator can improve its population densities on the non‐favourable cultivar, thereby reducing M. tanajoa densities with subsequent increases in cassava yield. The study was conducted in a cassava field in Benin, West Africa. The experiments confirmed that T. aripo effectively suppresses M. tanajoa populations on both cultivars and showed, in the no‐predator‐exclusion experiments, that cultivar combinations have significant effects on M. tanajoa and T. aripo densities. Indeed, T. aripo load on the non‐preferred cultivar was lowest in subplots where the proportion of T. aripo‐preferred cultivar was also low, while, and as expected, M. tanajoa load on the non‐preferred cultivar showed decreasing trends with increasing T. aripo densities. The possible mechanisms by which cultivar mixing could increase predator load on the non‐favourable cultivar were discussed. Our data showed that appropriate cultivar combinations effectively compensate for morphologically related differences in natural enemy abundance on a normally predator‐deficient cultivar, resulting in lower pest densities on the non‐favourable cultivar. In practical terms, this strategy could, in part, enhance adoption of cultivars that do not support sufficient levels of natural enemies for pest control.  相似文献   

14.
The invasive Halyomorpha halys (Heteroptera: Pentatomidae) is a key pest of fruits in the Emilia‐Romagna region of Italy. For the development of a sustainable management programme, knowledge of its native natural enemy community and its efficacy is essential. A three‐year field survey was conducted exposing H. halys egg masses in different types of habitats to investigate the efficacy of native natural enemies in reducing the H. halys populations in the Emilia‐Romagna region, where the stinkbug was first detected in 2012. Over the first year of the study, sentinel eggs from laboratory cultures were stapled to the underside of leaves in various host trees, whereas in following years H. halys adults were directly caged on branches in sleeve cages to allow natural oviposition. Over the examined years, low rates of parasitism (1%–3%) and predation (2%–5%) were observed. Parasitism was caused exclusively by the generalist parasitoid Anastatus bifasciatus.  相似文献   

15.
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), poses a new threat to soybean, Glycine max (L.) Merrill (Fabaceae), production in the north central USA. As H. halys continues to spread and increase in abundance in the region, the interaction between H. halys and management tactics deployed for other pests must be determined. Currently, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most abundant and damaging insect pest of soybean in the region. Aphid‐resistant soybean, mainly with the Rag1 gene, is commercially available for management of A. glycines. Here, experiments were performed to evaluate the effects of Rag1 aphid‐resistant soybean on the mortality, development, and preference of H. halys. In a no‐choice test, mortality of H. halys reared on Rag1 aphid‐resistant soybean pods was significantly lower than when reared on aphid‐susceptible soybean pods (28 vs. 53%). Development time, adult weight, and proportion females of surviving adults did not differ when reared on Rag1 aphid‐resistant or aphid‐susceptible soybean pods. In choice tests, H. halys exhibited a preference for Rag1 aphid‐resistant over aphid‐susceptible soybean pods after 4 h, but not after 24 h. Halyomorpha halys exhibited no preference when tested with vegetative‐stage or reproductive‐stage soybean plants. The preference by H. halys for Rag1 aphid‐resistant soybean pods and the decreased mortality when reared on these pods suggests that the use of Rag1 aphid‐resistant soybean may favor this emerging pest in the north central USA.  相似文献   

16.
Diversifying agricultural landscapes may mitigate biodiversity declines and improve pest management. Yet landscapes are rarely managed to suppress pests, in part because researchers seldom measure key variables related to pest outbreaks and insecticides that drive management decisions. We used a 13‐year government database to analyse landscape effects on European grapevine moth (Lobesia botrana) outbreaks and insecticides across c. 400 Spanish vineyards. At harvest, we found pest outbreaks increased four‐fold in simplified, vineyard‐dominated landscapes compared to complex landscapes in which vineyards are surrounded by semi‐natural habitats. Similarly, insecticide applications doubled in vineyard‐dominated landscapes but declined in vineyards surrounded by shrubland. Importantly, pest population stochasticity would have masked these large effects if numbers of study sites and years were reduced to typical levels in landscape pest‐control studies. Our results suggest increasing landscape complexity may mitigate pest populations and insecticide applications. Habitat conservation represents an economically and environmentally sound approach for achieving sustainable grape production.  相似文献   

17.
Detecting sources of insects attacking grain stores can help to develop more effective pest management tools. This study considers combinations of chemical elements as intrinsic markers for tracing resource use by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), a pest of stored maize (Zea mays L., Poaceae) which occurs in natural environments where alternative hosts may support reservoirs of infestation. Prostephanus truncatus were laboratory‐reared on maize or field‐caught in pheromone‐baited flight‐traps. Beetles and hosts were screened for multiple elements using inductively coupled plasma atomic emission spectrometry (ICP‐AES). For elements above detection limits, we tested relationships between determinations for various host plants, and for beetles according to environment where captured. An alternative host, Spondias purpurea L. (Anacardiaceae), contained more Al, B, Ca, Cu, Fe, Mg, Si, and Sr than maize, and less P and Zn. Elemental profiles of beetles were associated with environment, with significantly lower Al, Ca, Cu, Cr, Fe, P, S, Si, Sr, Ti, and Zn determinations in maize‐reared beetles than in beetles captured in agricultural or natural environments. Additionally, Al, Ba, K, P, Sr, and Ti determinations of field beetles captured in agricultural vs. natural environments were significantly different. This suggests Al, Sr, and Ti as candidate markers for environment, and possibly others as elemental concentrations (except B, Ba, Ni, and P) were significantly different in comparisons of all field‐collected vs. maize‐reared beetles. We present a robust practical solution which successfully identified combinations of elemental markers for remotely tracing resource use and dispersal by P. truncatus. We discuss the application of chemical characterisation for identifying intrinsic markers of pests, particularly species with alternative hosts. We discuss how to manage the low replication and unbalanced sample sizes inherent in insect elemental screening, particularly when rarer elements are potential markers.  相似文献   

18.
Abstract 1 Accurate assessment of the impact of natural enemies on pest populations is fundamental to the design of robust integrated pest management programmes. In most situations, diseases, predators and parasitoids act contemporaneously on insect pest populations and the impact of individual natural enemies, or specific groups of natural enemies, is difficult to interpret. These problems are exacerbated in agro‐ecosystems that are frequently disrupted by the application of insecticides. 2 A combination of life‐table and natural enemy exclusion techniques was utilized to develop a method for the assessment of the impact of endemic natural enemies on Plutella xylostella populations on commercial Brassica farms. 3 At two of the experimental sites, natural enemies had no impact on P. xylostella survival, at two other sites, natural enemy impact was low but, at a fifth site, natural enemies drastically reduced the P. xylostella population. 4 The calculation of marginal death rates and associated k‐values allowed the comparison of mortality factors between experimental sites, and indicated that larval disappearance was consistently the most important mortality factor, followed by egg disappearance, larval parasitism and pupal parasitism. The appropriateness of the methods and assumptions made to calculate the marginal death rates are discussed. 5 The technique represents a robust and easily repeatable method for the analysis of the activity of natural enemies of P. xylostella, which could be adapted for the study of other phytophagous pests.  相似文献   

19.
The factors explaining host‐associated differentiation (HAD) have not yet been fully characterized, especially in agricultural systems. It is thought that certain characteristics within a system may increase the probability for HAD to occur. These characteristics include relatively long‐standing evolutionary relationships between insects and their host plants, endophagy, and allochrony in host‐plant phenologies. We assessed the status of these characteristics as well as the presence of HAD in the cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae), a pest associated with blueberry and cranberry in eastern North America. We reveal the occurrence of two distinct populations of A. vaccinii that are allochronically isolated by the phenological stage of their respective host plants (cranberries or blueberries). Laboratory‐reared A. vaccinii adults collected from blueberries emerge at least 1 week earlier than adults from cranberries and the antennal sensitivity of adults to host‐plant volatiles differs between A. vaccinii collected from blueberry and cranberry. Despite finding characteristics indicative of HAD, we did not detect a genetic signature of HAD in A. vaccinii. These findings suggest that HAD may occur through behavioral and phenological mechanisms before there is sufficient genetic variation to be detected.  相似文献   

20.
The disruption of chemical communication between insects and host plants may take place due to an interference with the signal‐emitting host plant, or the signal‐receiving insect, compromising the signal production and emission, or its reception and processing. Anthropogenic compounds, in general, and pesticides, in particular, may impair the chemical communication that mediates host location by insects. Five different pesticides (the insecticides malathion, pyrethrins and spinetoram, and the fungicides fenhexamid and pyrimethanil) were applied at their field rates to raspberry fruits, or Petri dishes enclosing adult spotted wing Drosophila (SWD; Drosophila suzukii), and the attraction to fruit volatiles was evaluated in a series of two‐choice flight bioassays. The application of raspberry fruit with pesticides did not statistically affect attraction of unexposed adults, with exceptions being the spinetoram treatment, which led to mild insect avoidance, and the pyrethrin treatment, which resulted in slightly preferential attraction. In contrast, adults sublethally exposed to the pesticides had their flight take‐off impaired by the insecticides, but not by the fungicides. Furthermore, all pesticides, and particularly the insecticides, compromised the upwind capture of adults. Thus, the treatment with pesticides may indeed interfere with the flight response of SWD to host volatiles, particularly when the insects were previously exposed to pesticides. These findings are suggestive of the potential for sublethal insecticidal exposures to aid pest control and also provide evidence that pesticide use may compromise sampling/trapping strategies for this pest species that are based on attraction to host volatiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号