首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in molecular technology have revolutionized research on all aspects of the biology of organisms, including ciliates, and created unprecedented opportunities for pursuing a more integrative approach to investigations of biodiversity. However, this goal is complicated by large gaps and inconsistencies that still exist in the foundation of basic information about biodiversity of ciliates. The present paper reviews issues relating to the taxonomy of ciliates and presents specific recommendations for best practice in the observation and documentation of their biodiversity. This effort stems from a workshop that explored ways to implement six Grand Challenges proposed by the International Research Coordination Network for Biodiversity of Ciliates (IRCN‐BC). As part of its commitment to strengthening the knowledge base that supports research on biodiversity of ciliates, the IRCN‐BC proposes to populate The Ciliate Guide, an online database, with biodiversity‐related data and metadata to create a resource that will facilitate accurate taxonomic identifications and promote sharing of data.  相似文献   

2.
1. The polyunsaturated fatty acid eicosapentaenoic acid (EPA) plays an important role in aquatic food webs, in particular at the primary producer–consumer interface where keystone species such as daphnids may be constrained by its dietary availability. Such constraints and their seasonal and interannual changes may be detected by continuous measurements of EPA concentrations. However, such EPA measurements became common only during the last two decades, whereas long‐term data sets on plankton biomass are available for many well‐studied lakes. Here, we test whether it is possible to estimate EPA concentrations from abiotic variables (light and temperature) and the biomass of prey organisms (e.g. ciliates, diatoms and cryptophytes) that potentially provide EPA for consumers. 2. We used multiple linear regression to relate size‐ and taxonomically resolved plankton biomass data and measurements of temperature and light intensity to directly measured EPA concentrations in Lake Constance during a whole year. First, we tested the predictability of EPA concentrations from the biomass of EPA‐rich organisms (diatoms, cryptophytes and ciliates). Secondly, we included the variables mean temperature and mean light intensity over the sampling depth (0–20 m) and depth (0–8 and 8–20 m) as factors in our model to check for large‐scale seasonal‐ and depth‐dependent effects on EPA concentrations. In a third step, we included the deviations of light and temperature from mean values in our model to allow for their potential influence on the biochemical composition of plankton organisms. We used the Akaike Information Criterion to determine the best models. 3. All approaches supported our proposition that the biomasses of specific plankton groups are variables from which seston EPA concentrations can be derived. The importance of ciliates as an EPA source in the seston was emphasised by their high weight in our models, although ciliates are neglected in most studies that link fatty acids to seston taxonomic composition. The large‐scale seasonal variability of light intensity and its interaction with diatom biomass were significant predictors of EPA concentrations. The deviation of temperature from mean values, accounting for a depth‐dependent effect on EPA concentrations, and its interaction with ciliate biomass were also variables with high predictive power. 4. The best models from the first and second approaches were validated with measurements of EPA concentrations from another year (1997). The estimation with the best model including only biomass explained 80%, and the best model from the second approach including mean temperature and depth explained 87% of the variability in EPA concentrations in 1997. 5. We show that it is possible to predict EPA concentrations reliably from plankton biomass, while the inclusion of abiotic factors led to results that were only partly consistent with expectations from laboratory studies. Our approach of including biotic predictors should be transferable to other systems and allow checking for biochemical constraints on primary consumers.  相似文献   

3.
The deep sea has long been a mysterious and attractive habitat for protistologists. However, logistical difficulties severely limit sampling opportunities. Consequently, our knowledge of the protists in the deep sea, (arguably the largest habitat on earth), is relatively sparse. Here, we present a unique time‐series concerning three different protist taxa that share only the characteristics of being relatively large, robust to sampling, and easily identifiable to species level using light microscopy: tintinnid ciliates, phaeogromid cercozoans (e.g. Challengerids) and amphisolenid dinoflagellates. We sampled a near‐shore deep water site in the N.W. Mediterranean Sea at 250 m depth over a 2‐yr period at approximately weekly intervals from January 2017 to December 2018. To our knowledge, no previous studies have employed sampling on a similar time scale. We found taxa that appear to be restricted to deep waters, distinct seasonal patterns of abundance in some taxa, and in others nonseasonal successional patterns. Based on data from sampling following a flash flood event, the Challengerid population appeared to respond positively to a pulse of terrigenous input. Some of the distinct mesopelagic tintinnid ciliates and amphisolinid dinoflagellates were also found in two samples from the North Atlantic mesopelagic gathered from near the Azores Islands in September 2018. We conclude that there are a variety of protist taxa endemic to the mesopelagic, that the populations are dynamic, and they may be widely distributed in the deep waters of the world ocean.  相似文献   

4.
The ciliate Climacostomum virens normally contains algae as symbionts in its cytoplasm and retains them over many generations. An aposymbiotic strain of C. virens which cannot re-establish a new symbiotic association by ingestion of algae derived from green Climacostomum was recently isolated in our laboratory. Results of infection experiments showed that all newly ingested, potentially symbiotic algae were digested in food vacuoles. To clarify whether these ciliates have completely lost their ability to sustain symbiosis with algae or whether this ability can eventually be re-established, infection experiments were performed using a microinjection technique. We have achieved successful infection of algae-free Climacostomum using this method. The endosymbiont population was established in ciliates from as few as 3-5 injected algae, which have retained an intact perialgal vacuole membrane around them. To our knowledge, this is the first evidence of successful infection of aposymbiotic ciliates with algae by microinjection.  相似文献   

5.
Callejas S  Gutiérrez JC 《Protist》2002,153(2):133-142
Hypotrich ciliates present a macronuclear genome consisting of gene-sized instead of chromosome-sized DNA molecules. Exploiting this unique eukaryotic genome feature, we introduce, for the first time in ciliates, a rapid and easy PCR method using telomeric primers to isolate small complete macronuclear DNA molecules or minichromosomes. Two presumably abundant macronuclear DNA molecules, containing ribosomal genes, were amplified from the Oxytricha (Sterkiella) nova complete genome after using this method, and then were cloned and sequenced. The 5S rDNA sequence of O. (S.) nova is the third one reported among hypotrich ciliates; its primary and secondary structure is compared with other eukaryotic 5S rRNAs. The ribosomal protein S26 gene is the first one reported among ciliates. This "End-End-PCR" method might be useful to obtain similar gene-sized macronuclear molecules from other hypotrich ciliates, and, therefore, to increase our knowledge on ribosomal genes in these eukaryotic microorganisms.  相似文献   

6.
Though representing a major component of eukaryotic biodiversity, many microbial eukaryotes remain poorly studied, including the focus of the present work, testate amoebae of the order Arcellinida (Amoebozoa) and non-model lineages of ciliates (Alveolata). In particular, knowledge of genome structures and changes in genome content over the often-complex life cycles of these lineages remains enigmatic. However, the limited available knowledge suggests that microbial eukaryotes have the potential to challenge our textbook views on eukaryotic genomes and genome evolution. In this study, we developed protocols for DAPI (4′,6-diamidino-2-phenylindole) staining of Arcellinida nuclei and adapted protocols for ciliates. In addition, image analysis software was used to estimate the DNA content in the nuclei of Arcellinida and ciliates, and the measurements of target organisms were compared to those  of well-known model organisms. The results demonstrate that the methods we have developed for nuclear staining in these lineages are effective and can be applied to other microbial eukaryotic groups by adjusting certain stages in the protocols.  相似文献   

7.
Hypotrich ciliates present a macronuclear genome consisting of gene-sized instead of chromosome-sized DNA molecules. Exploiting this unique eukaryotic genome feature, we introduce, for the first time in ciliates, a rapid and easy PCR method using telomeric primers to isolate small complete macronuclear DNA molecules or minichromosomes. Two presumably abundant macronuclear DNA molecules, containing ribosomal genes, were amplified from the Oxytricha (Sterkiella) nova complete genome after using this method, and then were cloned and sequenced. The 5S rDNA sequence of O. (S.) nova is the third one reported among hypotrich ciliates; its primary and secondary structure is compared with other eukaryotic 5S rRNAs. The ribosomal protein S26 gene is the first one reported among ciliates. This “End-End-PCR” method might be useful to obtain similar gene-sized macronuclear molecules from other hypotrich ciliates, and, therefore, to increase our knowledge on ribosomal genes in these eukaryotic microorganisms.  相似文献   

8.
Expert knowledge is a valuable source of information with a wide range of research applications. Despite the recent advances in defining expert knowledge, little attention has been given to how to view expertise as a system of interacting contributory factors for quantifying an individual's expertise. We present a systems approach to expertise that accounts for many contributing factors and their inter‐relationships and allows quantification of an individual's expertise. A Bayesian network (BN) was chosen for this purpose. For illustration, we focused on taxonomic expertise. The model structure was developed in consultation with taxonomists. The relative importance of the factors within the network was determined by a second set of taxonomists (supra‐experts) who also provided validation of the model structure. Model performance was assessed by applying the model to hypothetical career states of taxonomists designed to incorporate known differences in career states for model testing. The resulting BN model consisted of 18 primary nodes feeding through one to three higher‐order nodes before converging on the target node (Taxonomic Expert). There was strong consistency among node weights provided by the supra‐experts for some nodes, but not others. The higher‐order nodes, “Quality of work” and “Total productivity”, had the greatest weights. Sensitivity analysis indicated that although some factors had stronger influence in the outer nodes of the network, there was relatively equal influence of the factors leading directly into the target node. Despite the differences in the node weights provided by our supra‐experts, there was good agreement among assessments of our hypothetical experts that accurately reflected differences we had specified. This systems approach provides a way of assessing the overall level of expertise of individuals, accounting for multiple contributory factors, and their interactions. Our approach is adaptable to other situations where it is desirable to understand components of expertise.  相似文献   

9.
ABSTRACT. Cold seeps are areas of the seafloor where hydrogen sulfide- and methane-rich fluid seepage occurs, often sustaining chemosynthetic ecosystems. It is well known that both archaea and bacteria oxidize sulfides and methane to produce chemical energy and that several endemic animals use this energy to thrive in cold seeps. On the other hand, there is little knowledge regarding diversity and ecology of microbial eukaryotes in this ecosystem. In this study we isolated environmental RNA and DNA from microbial mats of cold-seep sediment in Sagami Bay, Japan, and retrieved eukaryotic small-subunit ribosomal RNA sequences with polymerase chain reaction methods followed by clone library construction. Most RNA-derived clones obtained were from ciliates, although DNA-derived clones were mainly from the fungus Cryptococcus curvatus , suggesting that ciliates are active in the environment. The ciliate sequences were phylogenetically diverse, and represented eight known class lineages as well as undesignated lineages. Because most ciliates are bacterivorous, it is highly likely that the ciliates for which sequences were recovered play a role in the food web of this ecosystem as grazers of microbial mats. In addition, given that the environment studied is under highly reduced (anoxic) conditions, based on the prokaryotic community structure deduced from T-RFLP profiles, the ciliates detected may be obligatory or facultative anaerobes.  相似文献   

10.
The Yellow River delta in China is one of the most active regions of land–ocean interaction. It has suffered serious salinization due to drying‐up of the Yellow River, rising sea level, and seashore erosion, and thus represents a special and extreme environment. We evaluated the microeukaryotic molecular diversity and its response to change of seasons and environmental variables, in particular salinity in the soil of the Yellow River delta, by denaturing gradient gel electrophoresis (DGGE) and gene sequencing. The sequencing of the microeukaryotic DGGE bands revealed the presence of diverse groups dominated by protists in particular ciliates. We further recovered a high diversity of marine and soil ciliates inhabiting in coastal soil using the ciliate‐specific DGGE. The neighbor‐joining tree indicated that the ciliate 18S rDNA sequences from high‐salinity soil were affiliated to Colpodea, Spirotrichea, Litostomatea, and Oligohymenophorea, while all the sequences unique to the low‐salinity soil were affiliated to Colpodea. Statistical analysis indicated that the microeukaryotic molecular diversity was significantly different among sites, while statistically indistinguishable among seasons. Soil salinity might be the main factor regulating the distribution of microeukaryotes in the soil from the Yellow River delta.  相似文献   

11.
The three-dimensional (3D) organization of nucleoli in the somatic nuclei (macronuclei) of recently fed and starved Didinium nasutum was reconstructed on the basis of serial ultra-thin sections. It was shown that nucleoli, looking on the single sections like individual separate structures, appeared to be parts of the large complicated branchy nucleolar networks. A 30 h starvation did not lead to disintegration of this network, but stimulated formation of numerous vacuoles in the granular component of nucleoli, which becomes more condensed. Unlike starved D. nasutum, in fed ciliates numerous holes appeared in the fibrillar component located at the periphery of nucleoli. These holes may presumably serve as channels for transporting newly synthesized rRNA. To our knowledge, this is the first report of a 3D reconstruction of the nucleolar apparatus in ciliates.  相似文献   

12.
Ciliates are unicellular eukaryotes with separate germline and somatic genomes and diverse life cycles, which make them a unique model to improve our understanding of population genetics through the detection of genetic variations. However, traditional sequencing methods cannot be directly applied to ciliates because the majority are uncultivated. Single‐cell whole‐genome sequencing (WGS) is a powerful tool for studying genetic variation in microbes, but no studies have been performed in ciliates. We compared the use of single‐cell WGS and bulk DNA WGS to detect genetic variation, specifically single nucleotide polymorphisms (SNPs), in the model ciliate Tetrahymena thermophila. Our analyses showed that (i) single‐cell WGS has excellent performance regarding mapping rate and genome coverage but lower sequencing uniformity compared with bulk DNA WGS due to amplification bias (which was reproducible); (ii) false‐positive SNP sites detected by single‐cell WGS tend to occur in genomic regions with particularly high sequencing depth and high rate of C:G to T:A base changes; (iii) SNPs detected in three or more cells should be reliable (an detection efficiency of 83.4–97.4% was obtained for combined data from three cells). This analytical method could be adapted to measure genetic variation in other ciliates and broaden research into ciliate population genetics.  相似文献   

13.
The fraction who benefit from treatment is the proportion of patients whose potential outcome under treatment is better than that under control. Inference on this parameter is challenging since it is only partially identifiable, even in our context of a randomized trial. We propose a new method for constructing a confidence interval for the fraction, when the outcome is ordinal or binary. Our confidence interval procedure is pointwise consistent. It does not require any assumptions about the joint distribution of the potential outcomes, although it has the flexibility to incorporate various user‐defined assumptions. Our method is based on a stochastic optimization technique involving a second‐order, asymptotic approximation that, to the best of our knowledge, has not been applied to biomedical studies. This approximation leads to statistics that are solutions to quadratic programs, which can be computed efficiently using optimization tools. In simulation, our method attains the nominal coverage probability or higher, and can have narrower average width than competitor methods. We apply it to a trial of a new intervention for stroke.  相似文献   

14.
Classical studies on protist diversity of freshwater environments worldwide have led to the idea that most species of microbial eukaryotes are known. One exemplary case would be constituted by the ciliates, which have been claimed to encompass a few thousands of ubiquitous species, most of them already described. Recently, molecular methods have revealed an unsuspected protist diversity, especially in oceanic as well as some extreme environments, suggesting the occurrence of a hidden diversity of eukaryotic lineages. In order to test if this holds also for freshwater environments, we have carried out a molecular survey of small subunit ribosomal RNA genes in water and sediment samples of two ponds, one oxic and another suboxic, from the same geographic area. Our results show that protist diversity is very high. The majority of phylotypes affiliated within a few well established eukaryotic kingdoms or phyla, including alveolates, cryptophytes, heterokonts, Cercozoa, Centroheliozoa and haptophytes, although a few sequences did not display a clear taxonomic affiliation. The diversity of sequences within groups was very large, particularly that of ciliates, and a number of them were very divergent from known species, which could define new intra-phylum groups. This suggests that, contrary to current ideas, the diversity of freshwater protists is far from being completely described.  相似文献   

15.
Ciliated protozoa are potential grazers of primary and bacterial production and act as intermediaries between picoplankton and copepods and other large suspension feeders. Accurate determination of ciliate abundance and feeding mode is crucial in oceanic carbon budget estimations. However, the impact of different fixatives on the abundance and cell volume of ciliates has been investigated in only a few studies using either laboratory cultures or natural populations. Lugol's solution and formalin are the most commonly used fixatives for the preservation of ciliates samples. In the present study, the aim was to compare 0.4% Lugol's solution and 2% borated-formalin fixation and evaluate the need of counting duplicate samples each using a different fixative. For this, a large number of samples (n = 110) from the NE Atlantic was analyzed in the frame of POMME program (Multidisciplinary Mesoscale Ocean Program). We established a statistically significant relationship (p < 0.0001) between Lugol's and formalin fixed samples for both abundance (r2 = 0.50) and biomass (r2 = 0.76) of aloricate ciliates which showed that counts were higher in Lugol's solution by a factor of 2 and a non-taxon specific cell-loss in formalin. However, loricate ciliate abundance in our samples which were represented primarily by Tintinnus spp. did not show any difference between the two treatments. Abundance and biomass of mixotrophic ciliates (chloroplast-bearing cells) were for various reasons underestimated in both treatments. Our results show that unique fixation by formalin may severely underestimate ciliates abundance and biomass although their population may not alter. For this reason, Lugol's solution is best for the estimation of their abundance and biomass. However, for counts of mixotrophs and the evaluation of the ecological role of ciliates in carbon flux, double fixation is essential. Compromises regarding the fixatives have lead to severe underestimations of mixotrophs in studies conducted by now.  相似文献   

16.
Ciliates are some of the most abundant gut fauna in wild chimpanzees. However, their presence in captive populations is usually low presumably due to anti‐helmintic prophylaxis or feeding on low fibre diet. We studied a semi‐captive colony of chimpanzees at the Sweetwaters Sanctuary in Kenya subject to routine prophylactic dose of albendazole to clear chimpanzees of parasitic helminths. Fresh faecal samples from known individuals were collected before and subsequently after prophylaxis. The samples were fixed in 10% formalin and examined by the sedimentation method. Troglodytella abrassarti had 42.5% prevalence whereas other ciliates had 65% prevalence. The prevalence of the T. abrassarti and other ciliates significantly declined immediately after prophylaxis and then rose slowly thereafter. Our results suggest that ciliates are susceptible to anti‐helmintic prophylaxis and that treatment may eliminate ciliates or inhibit their proliferation within the host subsequently lowering their prevalence in the population. Variation in prevalence was not influenced by the age of the host. However, a steady recovery of ciliate prevalence was lower for male compared to female hosts. Our results imply that the intervals between prophylactic regimes could be prolonged differently for males and females to increase the prevalence of ciliates in captive populations.  相似文献   

17.
ABSTRACT. Ciliates are often important members of aquatic communities in terms of their biomass, productivity, trophic roles, or numerical abundance. The interaction of metazoan predators with ciliates will be mediated by a number of biotic factors, including the potential of ciliate populations for growth, the relative size of ciliates and metazooplankton, the species structure of the metazooplankton, and the defenses of ciliates. This paper reviews some of the recent laboratory an field data pertaining to these particular factor. Studies have generally shown that metazoans can reduce ciliate population growth rates, but this impact varies greatly with the ciliate and metazoans involved. Smaller ciliates are generally more vulnerable to metazoan predators than larger species, although this relationship will be affected by the defenses a ciliate may possess. The structure of the metazooplankton community itself will also affect ciliatemetazoan interactions. The suppression of ciliate populations by metazoans has important ecological consequences, and more study is needed to understand the interaction of these groups in aquatic systems.  相似文献   

18.
When Tetrahymena ciliates are cultured with Legionella pneumophila, the ciliates expel bacteria packaged in free spherical pellets. Why the ciliates expel these pellets remains unclear. Hence, we determined the optimal conditions for pellet expulsion and assessed whether pellet expulsion contributes to the maintenance of growth and the survival of ciliates. When incubated with environmental L. pneumophila, the ciliates expelled the pellets maximally at 2 days after infection. Heat-killed bacteria failed to produce pellets from ciliates, and there was no obvious difference in pellet production among the ciliates or bacterial strains. Morphological studies assessing lipid accumulation showed that pellets contained tightly packed bacteria with rapid lipid accumulation and were composed of the layers of membranes; bacterial culturability in the pellets rapidly decreased, in contrast to what was seen in ciliate-free culture, although the bacteria maintained membrane integrity in the pellets. Furthermore, ciliates newly cultured with pellets were maintained and grew vigorously compared with those without pellets. In contrast, a human L. pneumophila isolate killed ciliates 7 days postinfection in a Dot/Icm-dependent manner, and pellets harboring this strain did not support ciliate growth. Also, pellets harboring the human isolate were resuscitated by coculturing with amoebae, depending on Dot/Icm expression. Thus, while ciliates expel pellet-packaged environmental L. pneumophila for stockpiling food, the pellets packaging the human isolate are harmful to ciliate survival, which may be of clinical significance.  相似文献   

19.
The ciliates living in a shallow groundwater system in southern Ontario, Canada were subjected to an in situ temperature manipulation over 14 months. Ciliates were collected from the bed surface of a small springbrook and from interstitial water collected at five depths beneath its surface. Mean temperature elevations established at each depth (?20, ?40, ?60, ?80, and ?100 cm) between the experiment's control and treatment blocks were 1.9, 3.5, 3.9, 3.8, and 3.6 °C, respectively, and were based on global warming projections for the region. In total, 160 species of ciliate belonging to 85 genera were identified. Overall, the treatment block had a higher density (6510±342 cells L?1; ±1 SE) than the control (5797±237 cells L?1), but densities were both vertically and longitudinally variable. Control densities decreased with depth, whereas treatment densities were more equal among depths. Total species richness showed no significant difference between blocks when combining all sampling dates and depths, although species composition changed. The ciliate community was dominated by small (15–50 μm), followed by medium (50–200 μm), and only a few large‐sized (>200 μm) species. Small ciliates contributed 82–97% of the total density. Small ciliates also contributed more to the treatment (94%) than the control block (88%). The most common ciliate feeding groups were bacterivores, omnivores, predators, and algae‐diatom feeders, with bacterivores being most dominant (83–99% of the total numbers collected). Ordination analyses revealed that ciliate distribution was strongly correlated with groundwater temperature, although dissolved oxygen level, concentrations of ammonia and nitrate, and depth also appeared to be influential. Peak densities of many species occurred in either the control or treatment blocks, but not in both. The benefits of using ciliates as a proxy for higher, much longer‐lived, eukaryotes in climate change studies are discussed.  相似文献   

20.
Estimates of inbreeding and relatedness are commonly calculated using molecular markers, although the accuracy of such estimates has been questioned. As a further complication, in many situations, such estimates are required in populations with reduced genetic diversity, which is likely to affect their accuracy. We investigated the correlation between microsatellite‐ and pedigree‐based coefficients of inbreeding and relatedness in laboratory populations of Drosophila melanogaster that had passed through bottlenecks to manipulate their genetic diversity. We also used simulations to predict expected correlations between marker‐ and pedigree‐based estimates and to investigate the influence of linkage between loci and null alleles. Our empirical data showed lower correlations between marker‐ and pedigree‐based estimates in our control (nonbottleneck) population than were predicted by our simulations or those found in similar studies. Correlations were weaker in bottleneck populations, confirming that extreme reductions in diversity can compromise the ability of molecular estimates to detect recent inbreeding events. However, this result was highly dependent on the strength of the bottleneck and we did not observe or predict any reduction in correlations in our population that went through a relatively severe bottleneck of N = 10 for one generation. Our results are therefore encouraging, as molecular estimates appeared robust to quite severe reductions in genetic diversity. It should also be remembered that pedigree‐based estimates may not capture realized identity‐by‐decent and that marker‐based estimates may actually be more useful in certain situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号