首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatially heterogeneous environments are generally characterized by nested landscape patterns with resource aggregations on several scales. Empirical studies indicate that such nested landscape patterns impose selection constraints on the perceptive scales of animals, but the underlying selection mechanisms are unclear. We investigated the selection dynamics of perceptive scale within a spatial resource utilization model, where the environment is characterized by its resource distribution and species differ in their perceptive scales and resource preemption capabilities. Using three model landscapes with various resource distributions, we found that the optimal perceptive scale is determined by scale-specific attributes of the landscape pattern and that the number of coexisting species increases with the number of characteristic scales. Based on the results of this model, we argue that resource aggregations on different scales act as distinct resources and that animal species of particular perceptive scales are superior in utilizing resource aggregations of comparable spatial extent. Due to the allometric relationship between body size and perceptive scale, such fitness difference might result in discontinuous body mass distributions.  相似文献   

2.
3.
Spatial scale is fundamental in understanding species–landscape relationships because species’ responses to landscape characteristics typically vary across scales. Nonetheless, such scales are often unidentified or unreliably predicted by theory. Many landscapes worldwide are urbanizing, yet the spatial scaling of species’ responses to urbanization is poorly understood. We investigated the spatial scaling of urbanization effects on a community of 15 mammal species using ~60 000 wildlife detections collected from a constellation of 207 camera traps across an extensive urban park system. We embedded a bivariate Gaussian kernel in hierarchical multi-species models to determine two scales of effect (a scale of maximal effect and a broader scale of cumulative landscape effect) for two biological responses (occupancy and site visit frequency) across two seasons (winter and summer) for each species. We then assessed whether scales of effect varied according to theoretical predictions associated with biological responses and species traits (body size and mobility). Scales of effect ranged from < 50 m to > 9000 m and varied among species, but not as predicted by theory. Species’ occupancy generally showed a weak response to urbanization and the scale of this effect was both highly uncertain and consistent across species. We did not detect any relationship between scales of effect and species’ body size or mobility, nor was there any evident pattern of scaling across biological response or seasons. These results imply that 1) urbanization effects on mammals manifest across a very broad spectrum of spatial scales, and 2) current theories that a priori predict the scale at which urbanization affects mammals may be of limited use within a given system. Overall, this study suggests that developing general theory regarding the scaling of species–landscape relationships requires additional empirical work conducted across multiple species, systems and timescales.  相似文献   

4.
Land use change modifies the environment at multiple spatial scales, and is a main driver of species declines and deterioration of ecosystem services. However, most of the research on the effects of land use change has focused on taxonomic diversity, while functional diversity, an important predictor of ecosystem services, is often neglected. We explored how local and landscape scale characteristics influence functional and taxonomic diversity of hummingbirds in the Andes Mountains in southern Ecuador. Data was collected in six landscapes along a land use gradient, from an almost intact landscape to one dominated by cattle pastures. We used point counts to sample hummingbirds from 2011 to 2012 to assessed how local factors (i.e., vegetation structure, flowering plants richness, nectar availability) and landscape factors (i.e., landscape heterogeneity, native vegetation cover) influenced taxonomic and functional diversity. Then, we analyzed environment – trait relationships (RLQ test) to explore how different hummingbird functional traits influenced species responses to these factors. Taxonomic and functional diversity of hummingbirds were positively associated with landscape heterogeneity but only functional diversity was positively related to native vegetation coverage. We found a weak response of taxonomic and functional diversity to land use change at the local scale. Environment‐trait associations showed that body mass of hummingbirds likely influenced species sensitivity to land use change. In conclusion, landscape heterogeneity created by land use change can positively influence hummingbird taxonomic and functional diversity; however, a reduction of native vegetation cover could decrease functional diversity. Given that functional diversity can mediate ecosystem services, the conservation of native vegetation cover could play a key role in the maintenance of hummingbird pollination services in the tropical Andes. Moreover, there are particular functional traits, such as body mass, that increase a species sensitivity to land use change.  相似文献   

5.
Niche theory in its various forms is based on those environmental factors that permit species persistence, but less work has focused on defining the extent, or size, of a species' environment: the area that explains a species' presence at a point in space. We proposed that this habitat extent is identifiable from a characteristic scale of habitat selection, the spatial scale at which habitat best explains species' occurrence. We hypothesized that this scale is predicted by body size. We tested this hypothesis on 12 sympatric terrestrial mammal species in the Canadian Rocky Mountains. For each species, habitat models varied across the 20 spatial scales tested. For six species, we found a characteristic scale; this scale was explained by species' body mass in a quadratic relationship. Habitat measured at large scales best-predicted habitat selection in both large and small species, and small scales predict habitat extent in medium-sized species. The relationship between body size and habitat selection scale implies evolutionary adaptation to landscape heterogeneity as the driver of scale-dependent habitat selection.  相似文献   

6.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

7.
National bird‐nest record schemes provide a valuable data source to study large‐scale changes in basic breeding biology and effects of climate change on birds. Using nest‐record scheme data from 26 common Finnish breeding bird species from whole Finland, we estimated the laydate of the first egg for 129 063 nesting attempts. We then investigated the relationship of mean spring temperature and spring precipitation sum to changes in the onset of laying over the period 1961–2012. In addition, we examine differences in response to these climatic variables for species grouped for different life history strategies; migration, diet and habitat. Finally, we test whether body size is related to the strength of phenological response. We show that 26 common Finnish breeding bird species have advanced their laying dates over time and to an increase in the mean spring temperature over the study period. When species are grouped according life history strategies, we find that breeding phenological change is negatively associated with changes in the mean spring temperature where residents respond strongest to changes in mean spring temperature, but also short‐ and long‐distance migrants advance laydates with increasing spring temperatures. Breeding phenological change is also associated with spring precipitation, where resident species delay and short‐distance migrants advance the onset of breeding. In addition we find that omnivorous species respond stronger than insectivorous species to changes in spring temperature. In contrast to results from an earlier study, we do not find evidence that small‐sized species respond stronger to spring temperature than large‐sized species. As climate warming is predicted to continue in the future, long‐term citizen science schemes, such as the Finnish nest‐card scheme, prove to be a valuable cost‐effective way to monitor the environment and allow investigation into how species are responding to changes in their environment.  相似文献   

8.
The goal of the present study is to assess how landscape configuration influenced the distribution of life-history traits across bird, carabid beetle and butterfly communities of mosaic forest landscapes in south-western France. A set of 12 traits was selected for each species, characterizing rarity, biogeographical distribution, body size, trophic guild, dispersal power, reproductive potential and phenology. We used a three-table ordination method, RLQ analysis, to link directly bird, beetle and butterfly traits to the same set of landscape metrics calculated in 400 m-radius buffers around sample points. RLQ analyses showed significant associations between life-history traits and landscape configuration for all three taxonomical groups. Threatened species from all groups were characterized by a combination of life traits that makes them especially sensitive to the fragmentation of herbaceous and shrub-dominated habitats at the landscape scale. These key life traits were low productivity, intermediate body mass, restricted geographic range, late phenology and ground gleaning for threatened birds, intermediate body size, spring adult activity, northern distribution and summer breeding period for threatened carabids, and restricted range, overwintering as eggs or larvae, low mobility, monophagy and short flight periods for threatened butterflies. Focusing on species life traits can provide a functional perspective, which helps to determine adequate measures for the conservation of threatened species and communities of several taxonomical groups in mosaic landscapes.  相似文献   

9.
The search for surrogates of changes in species richness and community structure in fragmented landscapes involves not only the selection of predictors, such as landscape metrics or environmental variables, but also the identification of the spatial scale that is most relevant to the taxa in question. However the heavily intercorrelated nature of many structural features in fragmented landscapes complicates analyses, and the wide variation in species responses prevents the identification of a general trend. In this study, we used a two-tiered hierarchical variation partitioning to identify the unique and shared effects of: 1 – changes in vegetation structure at the plot scale, patch structure (size and shape), and forest cover at the landscape scale; and 2 – variables within these scales; as predictors of species richness and species’ abundances of birds in a fragmented landscape of Atlantic Forest; with the goal of aiding to the development of biodiversity indicators. Birds were sampled with mist-nets with a constant effort of 680 net-h at each of 23 sites, which resulted in almost 2600 captures. At the community level, regression models showed that changes in plot, patch and landscape scale variables explained a large proportion of the variation in species richness, but results from variation partitioning showed that the intercorrelation among predictors was so high that the unique contribution of each was non-significant. Our results point to a relatively large unique effect of local and landscape scale variables at the community level, but we also show that results vary greatly depending on the trophic guild being analysed. At the species level, multiple scale models also presented high explanatory power, however, species responses were so varied that we could not detect a general trend. We conclude that there is no single ‘best’ scale that could function as a proxy for changes in bird communities because each species and functional guild is uniquely affected by the environment, and suggest that efforts should be focused on finding indicators that encompasses all scales and the needs of different taxa.  相似文献   

10.
Mammals display considerable geographical variation in life history traits. To understand how climatic factors might influence this variation, we analysed the relationship between life history traits – adult body size, litter size, number of litters per year, gestation length, neonate body mass, weaning age and age at sexual maturity – and several environmental variables quantifying the seasonality and predictability of temperature and precipitation across the distribution range of five terrestrial mammal groups. Environmental factors correlated strongly with each other; therefore, we used principal components analysis to obtain orthogonal climatic predictors that could be used in multivariate models. We found that in bats, primates and even‐toed ungulates adult body size tends to be larger in species inhabiting cold, dry, seasonal environments, whereas in carnivores and rodents a smaller body size is characteristic of warm, dry environments, suggesting that low food availability might limit adult size. Species inhabiting cold, dry, seasonal habitats have fewer, larger litters and shorter gestation periods; however, annual fecundity in these species is not higher, implying that the large litter size of mammals living at high latitudes is probably a consequence of time constraints imposed by strong seasonality. On the other hand, the number of litters per year and annual fecundity were greater in species inhabiting environments with higher seasonality in precipitation. Lastly, we found little evidence for specific effects of environmental variability. Our results highlight the complex effects of environmental factors in the evolution of life history traits in mammals. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 719–736.  相似文献   

11.
The response of species diversity to dispersal capability is inherently scale‐dependent: increasing dispersal capability is expected to increase diversity at the local scale, while decreasing diversity at the metacommunity scale. However, these expectations are based on model formulations that neglect dispersal limitation and species segregation at the local scale. We developed a unifying framework of dispersal–diversity relationships and tested the generality of these expectations. For this purpose we used a spatially‐explicit neutral model with various combinations of survey area (local scale) and landscape size (metacommunity scale). Simulations were conducted using landscapes of finite and of conceptually infinite size. We analyzed the scale‐dependence of dispersal‐diversity relationships for exponentially‐bounded versus fat‐tailed dispersal kernels, several levels of speciation rate and contrasting assumptions on recruitment at short dispersal distances. We found that the ratio of survey area to landscape size is a major determinant of dispersal–diversity relationships. With increasing survey‐to‐landscape area ratio the dispersal–diversity relationship switches from monotonically increasing through a U‐shaped pattern (with a local minimum) to a monotonically decreasing pattern. Therefore, we provide a continuous set of dispersal–diversity relationships, which contains the response shapes reported previously as extreme cases. We suggest the mean dispersal distance with the minimum of species diversity (minimizing dispersal distance) for a certain scenario as a key characteristic of dispersal–diversity relationships. We show that not only increasing mean dispersal distances, but also increasing variances of dispersal can enhance diversity at the local scale, given a diverse species pool at the metacommunity scale. In conclusion, the response of diversity to variations of dispersal capability at spatial scales of interest, e.g. conservation areas, can differ more widely than expected previously. Therefore, land use and conservation activities, which manipulate dispersal capability, need to consider the landscape context and potential species pools carefully.  相似文献   

12.
The extent to which species’ ecological and phylogenetic relatedness shape their co‐occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co‐occurrence patterns are linked – after accounting for regional effects – to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co‐occurrences of carnivorous, migratory and cold‐climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life‐history traits beyond the climatic niche. They further offer a novel species‐oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds.  相似文献   

13.
We implemented cross‐species and independent‐contrasts multiple regression models to compare life‐history correlates of invasion success between regional and continental spatial scales among non‐native plants of eastern Australia. We focussed on three life‐history traits that represent major axes of variation in plant life history: specific leaf area (SLA), plant height and seed mass. After controlling for residence time and cross‐correlation with other life‐history traits, small seed mass was significantly and uniquely correlated with invasion success at continental and regional scales. High SLA was significantly and uniquely correlated with invasion success at the continental scale only. Plant height could not explain unique variation in invasion success at either spatial scale. Variation among spatial scales in the significance and strength of life‐history relationships with invasion success suggests that the search for predictive tools of invasion need not be fruitless, as long as predictive investigations are targeted at appropriate spatial scales.  相似文献   

14.
Environments causing variation in age‐specific mortality – ecological agents of selection – mediate the evolution of reproductive life‐history traits. However, the relative magnitude of life‐history divergence across selective agents, whether divergence in response to specific selective agents is consistent across taxa and whether it occurs as predicted by theory, remains largely unexplored. We evaluated divergence in offspring size, offspring number, and the trade‐off between these traits using a meta‐analysis in livebearing fishes (Poeciliidae). Life‐history divergence was consistent and predictable to some (predation, hydrogen sulphide) but not all (density, food limitation, salinity) selective agents. In contrast, magnitudes of divergence among selective agents were similar. Finally, there was a negative, asymmetric relationship between offspring‐number and offspring‐size divergence, suggesting greater costs of increasing offspring size than number. Ultimately, these results provide strong evidence for predictable and consistent patterns of reproductive life‐history divergence and highlight the importance of comparing phenotypic divergence across species and ecological selective agents.  相似文献   

15.
Habitat fragmentation restricts the movement of individuals across a landscape. In terrestrial and aquatic systems, barriers to movement can modify population and community dynamics at local or regional scales. This study contrasted life history traits related to lifespan with habitat fragmentation to determine impacts on species population genetic structure in the Neuse River Basin, USA. For this, we simulated gene flow among evenly-spaced populations in a river network and tracked individual and population genetics for 200 years. The modeled scenarios represent a full cross between five life history strategies and four riverscapes representing varying degrees of fragmentation. The five life history strategies include species (based on freshwater mussels) with average lifespans ranging from 10 to 50 years and age at maturity from 2 to 6 years. The movement landscapes included a (1) panmictic, (2) stepping-stone landscape allowing movement to only neighboring populations during each dispersal event, (3) partially-fragmented landscape divided by dams currently in the network, and (4) fully-fragmented landscape. Results suggest species with shorter lifespans have higher population genetic structure in fragmented landscapes than species with longer lifespans. Furthermore, species with shorter lifespans in highly fragmented landscapes may be harboring genetic degradation or decline as allele fixation and loss. Although anthropogenic fragmentation of many river systems is only 100–200 years old, the simulation indicates that species can respond genetically in that period of time. Additionally, the time frame of the simulation suggests that genetic impacts of habitat fragmentation in some species present in the Neuse River Basin may not yet be manifesting and restoration activities could be successful.  相似文献   

16.
Theoretical models predict strong influences of habitat loss and fragmentation on species distributions and demography, but empirical studies have shown relatively inconsistent support across species and systems. We argue that species’ responses to landscape‐scale habitat loss and fragmentation are likely to appear less idiosyncratic if it is recognized that species perceive the same landscapes in different ways. We present a new quantitative approach that uses species distribution models (SDMs) to measure landscapes (e.g. patch size, isolation, matrix amount) from the perspective of individual species. First, we briefly summarize the few efforts to date demonstrating that once differences in habitat distributions are controlled, consistencies in species’ responses to landscape structure emerge. Second, we present a detailed example providing step‐by‐step methods for application of a species‐centered approach using freely available land‐cover data and recent statistical modeling approaches. Third, we discuss pitfalls in current applications of the approach and recommend avenues for future developments. We conclude that the species‐centered approach offers considerable promise as a means to test whether sensitivity to habitat loss and fragmentation is mediated by phylogenetic, ecological, and life‐history traits. Cross‐species generalities in responses to habitat loss and fragmentation will be challenging to uncover unless landscape mosaics are defined using models that reflect differing species‐specific distributions, functional connectivity, and domains of scale. The emergence of such generalities would not only enhance scientific understanding of biotic processes driving fragmentation effects, but would allow managers to estimate species sensitivities in new regions.  相似文献   

17.
Avian species respond to ecological variability at a range of spatial scales and according to life history stage. Beaver dams create wetland systems for waterbirds that are utilized throughout different stages of the breeding season. We studied how beaver‐induced variability affected mobile pairs and more sedentary broods along with the production of Common Teal Anas crecca at the patch and landscape scale on their breeding grounds. Beavers Castor spp. are ecosystem engineers that enhance waterfowl habitats by impeding water flow and creating temporary flooding. Two landscapes in southern Finland with (Evo) and without (Nuuksio) American Beavers Castor canadensis were used in this study. To investigate the patch‐scale effect, pair and brood densities along with brood production were first compared at beaver‐occupied lakes and non‐beaver lakes in the beaver landscape. Annual pair and brood densities/km shoreline and brood production were compared between beaver and non‐beaver landscapes. Facilitative effects of beaver activity were manifest on brood density at both patch and landscape scales: these were over 90% and 60% higher in beaver patches and landscapes, respectively. An effect of beaver presence on pair density was only seen at the landscape level. Pair density did not strongly affect brood production, as shown earlier for relatively mildly density‐dependent Teal populations. Because the extent of beaver flooding was a crucial factor affecting annual Teal production in the study area, we infer beaver activity has consequences for the local Teal population. Ecosystem engineering by the beaver could therefore be considered a restoration tool in areas where waterfowl are in need of high‐quality habitats.  相似文献   

18.
This is the first study to relate syrphid life history traits to environmental variables with a multi‐trait approach. We aimed to answer two questions: 1. Do syrphid species respond to small scale changes in environmental variables in seasonally flooded grasslands in a Central European floodplain (Elbe)? 2. Can species response to environmental variables be explained by the biological characteristics of the species expressed by their life history traits? Despite their large mobility, syrphids did respond significantly to small scale changes in environmental variables (groundwater (GW) depth, cation exchange capacity, amplitude of variation of the GW‐depth). On the other hand, the biological traits of the syrphids did not sufficiently explain syrphid occurrence at the sites. Possible explanations are discussed and an outlook for further studies is given. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Species abundance and community composition are affected not only by the local environment, but also by broader landscape and regional context. Yet, determining the spatial scales at which landscapes affect species remains a persistent challenge, hindering our ability to understand how environmental gradients shape communities. This problem is amplified by rare species and imperfect species detection. Here, we present a Bayesian framework that allows uncertainty surrounding the ‘true’ spatial scale of species’ responses (i.e. changes in presence/absence) to be integrated directly into a community hierarchical model. This scale‐selecting multispecies occupancy model (ssMSOM) estimates the scale of response, and shows high accuracy and correct levels of uncertainty in parameter estimates across a broad range of simulation conditions. An ssMSOM can be run in a matter of minutes, as opposed to the many hours required to run normal multispecies occupancy models at all queried spatial scales, and then conduct model selection – a problem that up to now has prohibited scale of response from being rigorously evaluated in an occupancy framework. Alternatives to the ssMSOM, such as GLM‐based approaches frequently fail to detect the correct spatial scale and magnitude of response, and are often falsely confident by favoring the incorrect parameter estimates, especially as species’ detection probabilities deviate from perfect. We further show how trait information can be leveraged to understand how individual species’ scales of response vary within communities. Integrating spatial scale selection directly into hierarchical community models provides a means of formally testing hypotheses regarding spatial scales of response, and more accurately determining the environmental drivers that shape communities.  相似文献   

20.
Plant diversity is threatened in many agricultural landscapes. Our understanding of patterns of plant diversity in these landscapes is mainly based on small‐scale (<1000 m2) observations of species richness. However, such observations are insufficient for detecting the spatial heterogeneity of vegetation composition. In a case‐study farm on the North‐West Slopes of New South Wales, Australia, we observed species richness at four scales (quadrat, patch, land use and landscape) across five land uses (grazed and ungrazed woodlands, native pastures, roadsides and crops). We applied two landscape ecological models to assess the contribution of these land uses to landscape species richness: (i) additive partitioning of diversity at multiple spatial scales, and (ii) a measure of habitat specificity – the effective number of species that a patch contributes to landscape species richness. Native pastures had less variation between patches than grazed and ungrazed woodlands, and hence were less species‐rich at the landscape scale, despite having similar richness to woodlands at the quadrat and patch scale. Habitat specificity was significantly higher for ungrazed woodland patches than all other land uses. Our results showed that in this landscape, ungrazed woodland patches had a higher contribution than the grazed land uses to landscape species richness. These results have implications for the conservation management of this landscape, and highlighted the need for greater consensus on the influence of different land uses on landscape patterns of plant diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号