首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As much as the definition of life may be controversial, the definition of death also may prove problematic. In recent years it became apparent that the death of a living cell may follow more than one possible scenario: it may result from an externally applied physical injury (an accidental death), or it may be the outcome of activating an internal pathway for cell suicide (a programmed death). That cells can participate in their own execution may indicate that certain types of cell deaths that were previously considered to be caused by foreign agents such as pathogens or drugs may actually result from the activation of a programmed cell death pathway that is normally latent in cells. Here, we describe the activation of such a cell suicide pathway in plant cells upon the recognition of an invading pathogen. We discuss the possible use of this pathway as a defense mechanism against infection and the possibility that in many ways the use of this type of cell death in plants is functionally analogous to that used by mammalian cells in response to infection by pathogens. Dev. Genet. 21:279–289, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
传统上,细胞死亡分为凋亡和坏死两类。而近年来越来越多的研究表明坏死性凋亡是一种不同于凋亡和坏死的新型细胞死亡途径,在多种疾病模型中发挥着重要作用。本文对坏死性凋亡的产生机制、坏死性凋亡同凋亡和坏死的区别及其在疾病和药物靶点发现中的作用进行综述,以利于加深对不同细胞死亡方式的认识并促进相关新药的研发。  相似文献   

3.
Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these.  相似文献   

4.
Summary Derived from honeybees, melittin is a 26-amino acid, α-helical, membrane-attack protein that efficiently kills mammalian cells. To investigate the contribution of colloid-osmotic effects to the mechanism of cell death, we studied the effect of melittin on lymphocyte membrane permeability and cell volumes. Melittin concentrations of 0.5 to 2.0 μM induced release of membrane permeability markers without total disruption of the cell membrane. At these melittin concentrations, electrical-impedance cytometry demonstrated melittin-induced changes in red blood cell volumes (P<0.01), but no change in lymphocyte cell volumes (P>0.05). Streaming video microscopy, obtaining images of melittintreated lymphocytes at 80-ms intervals, demonstrated a loss of optical density (P<0.001) suggesting a flattening of the cell but no significant increase in cell perimeter (P>0.05). Real-time multiparameter flow cytometry of melittin-treated lymphocytes confirmed simultaneous loss of the cytoplasmic marker, calcein, and uptake of the DNA dye, ethidium homodimer, but demonstrated no increase in forward light scatter. Transmission-electron microscopy of melittin-treated lymphocytes showed normal cell volumes but discontinuities in the cell membrane suggesting direct membrane toxicity. We conclude that melittin causes lymphocyte death by a “leaky patch” mechanism that is independent of colloid-osmotic effects.  相似文献   

5.
In the tumour microenvironment (TME), immunogenic cell death (ICD) plays a major role in stimulating the dysfunctional antitumour immune system. Chronic exposure of damage‐associated molecular patterns (DAMPs) attracts receptors and ligands on dendritic cells (DCs) and activates immature DCs to transition to a mature phenotype, which promotes the processing of phagocytic cargo in DCs and accelerates the engulfment of antigenic components by DCs. Consequently, via antigen presentation, DCs stimulate specific T cell responses that kill more cancer cells. The induction of ICD eventually results in long‐lasting protective antitumour immunity. Through the exploration of ICD inducers, recent studies have shown that there are many novel modalities with the ability to induce immunogenic cancer cell death. In this review, we mainly discussed and summarized the emerging methods for inducing immunogenic cancer cell death. Concepts and molecular mechanisms relevant to antitumour effects of ICD are also briefly discussed.  相似文献   

6.
Glutamate is a classical excitotoxin of the central nervous system (CNS), but extensive work demonstrates neuroprotective roles of this neurotransmitter in developing CNS. Mechanisms of glutamate-mediated neuroprotection are still under scrutiny. In this study, we investigated mediators of glutamate-induced neuroprotection, and tested whether this neurotransmitter controls programmed cell death in the developing retina. The protective effect of N-methyl-d-aspartate (NMDA) upon differentiating cells of retinal explants was completely blocked by a neutralizing antibody to brain-derived neurotrophic factor (BDNF), but not by an antibody to neurotrophin-4 (NT-4). Consistently, chronic activation of NMDA receptor increased the expression of BDNF and trkB mRNA, as well as BDNF protein content, but did not change the content of NT-4 mRNA in retinal tissue. Furthermore, we showed that in vivo inactivation of NMDA receptor by intraperitoneal injections of MK-801 increased natural cell death of specific cell populations of the post-natal retina. Our results show that chronic activation of NMDA receptors in vitro induces a BDNF-dependent neuroprotective state in differentiating retinal cells, and that NMDA receptor activation controls programmed cell death of developing retinal neurons in vivo.  相似文献   

7.
《Autophagy》2013,9(8):1250-1251
Autophagy exerts dual functions in cancer, acting as both a tumor suppressor, for example, by preventing the accumulation of damaged proteins and organelles, and as a tumor promoter that supports tumor growth. Many anticancer therapies engage autophagy as part of a cellular response. However, the question of whether or not autophagic activity in cells undergoing cell death is the cause of death or whether it is actually an attempt to support survival in response to cellular stress conditions has been discussed with great controversy.  相似文献   

8.
We previously reported that marchantin M (Mar) is an active agent to induce apoptosis in human prostate cancer (PCa), but the molecular mechanisms of action remain largely unknown. Here, we demonstrate that Mar potently inhibited chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing activities of 20S proteasome both in in vitro and intracellular systems and significantly induced the accumulation of polyubiquitinated proteins in PCa cells. The computational modeling analysis suggested that Mar non-covalently bound to active sites of proteasome β5 and β1 subunits, resulting in a non-competitive inhibition. Proteasome inhibition by Mar subsequently resulted in endoplasmic reticulum (ER) stress, as evidenced by elevated glucose-regulated protein 78 and CHOP, increased phospho-eukaryotic translation initiation factor 2α (eIF2α), splicing of X-box-binding protein-1 and dilation of the ER. However, Mar-mediated cell death was not completely impaired by a pan inhibitor of caspases. Further studies revealed that the Mar-induced cell death was greatly associated with the activation of autophagy, as indicated by the significant induction of microtubule-associated protein-1 light chain-3 beta (LC3B) expression and conversion. Electron microscopic and green fluorescent protein-tagged LC3B analyses further demonstrated the ability of autophagy induction by Mar. Time kinetic studies revealed that Mar induced a rapid and highly sustained processing of LC3B in treated cells and simultaneously decreased the expression of p62/SQSTM1. Pharmacological blockade or knockdown of LC3B and Atg5 attenuated Mar-mediated cell death. The autophagic response triggered by Mar required the activation of RNA-dependent protein kinase-like ER kinase/eIF2α and suppression of the phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin axis via preventing activation and expression of Akt. Our results identified a novel mechanism for the cytotoxic effect of Mar, which strengthens it as a potential agent in cancer chemotherapy.  相似文献   

9.
SUMOylation dynamically conjugates SUMO molecules to the lysine residue of a substrate protein, which depends on the physiological state of the cell and the attached SUMO isoforms. A prominent role of SUMOylation in molecular pathways is to govern the cellular death process. Herein, we summarize the association between SUMOylation modification events and four types of cellular death processes: apoptosis, autophagy, senescence and pyroptosis. SUMOylation positively or negatively regulates a certain cellular death pattern depending on specific conditions including the attached SUMO isoforms, disease types, substrate proteins and cell context. Moreover, we also discuss the possible role of SUMOylation in ferroptosis and propose a potential role of the SUMOylated GPX4 in the regulation of ferroptosis. Mapping the exact SUMOylation network with cellular death contributes to develop novel SUMOylation-targeting disease therapeutic strategies.  相似文献   

10.
Polycystic ovary syndrome (PCOS) is a pathological condition recognized by menstrual cycle irregularities, androgen excess, and polycystic ovarian morphology, affecting a significant proportion of women of childbearing age and accounting for the most prevalent cause of anovulatory sterility. In addition, PCOS is frequently accompanied by metabolic and endocrine disturbances such as obesity, dyslipidemia, insulin resistance, and hyperinsulinemia, indicating the multiplicity of mechanisms implicated in the progression of PCOS. However, the exact pathogenesis of PCOS is yet to be elucidated. Programmed cell death 4 (PDCD4) is a ubiquitously expressed protein that contributes to the regulation of various cellular processes, including gene expression, cell cycle progression, proliferation, and apoptosis. Despite some disparities concerning its exact cellular effects, PDCD4 is generally characterized as a protein that inhibits cell cycle progression and proliferation and instead drives the cell into apoptosis. The apoptosis of granulosa cells (GCs) is speculated to take a major part in the occurrence and progression of PCOS by ceasing antral follicle development and compromising oocyte competence. Given the possible involvement of GC apoptosis in the progression of PCOS, as well as the contribution of PDCD4 to the regulation of cell apoptosis and the development of metabolic diseases, the current review aimed to discuss whether or how PDCD4 can play a role in the pathogenesis of PCOS by affecting GC apoptosis.  相似文献   

11.
Breast cancer (BC) is a very common cancer among women and one of the primary causes of death in women worldwide. Because BC has different molecular subtypes, the challenges associated with targeted therapy have increased significantly, and the identification of new therapeutic targets has become increasingly urgent. Blocking apoptosis and inhibiting cell death are important characteristics of malignant tumours, including BC. Under adverse conditions, including exposure to antitumour therapy, inhibition of cell death programmes can promote cancerous transformation and the survival of cancer cells. Therefore, inducing cell death in cancer cells is fundamentally important and provides new opportunities for potential therapeutic interventions. Lytic forms of cell death, primarily pyroptosis, necroptosis and ferroptosis, are different from apoptosis owing to their characteristic lysis, that is, the production of cellular components, to guide beneficial immune responses, and the application of lytic cell death (LCD) in the field of tumour therapy has attracted considerable interest from researchers. The latest clinical research results confirm that lytic death signalling cascades involve the BC cell immune response and resistance to therapies used in clinical practice. In this review, we discuss the current knowledge regarding the various forms of LCD, placing a special emphasis on signalling pathways and their implications in BC, which may facilitate the development of novel and optimal strategies for the clinical treatment of BC.  相似文献   

12.
The elimination of activated T cells by FAS-mediated signaling is an important immunoregulatory mechanism used to maintain homeostasis and prevent tissue damage. T cell receptor-dependent signals are required to confer sensitivity to FAS-mediated re-stimulation-induced cell death (RICD), however, the nature of these signals is not well understood. In this report, we show, using T cells from CD4-deficient mice reconstituted with a tail-less CD4 transgene, that CD4-dependent signaling events are a critical part of the competency signal required for RICD. This is in part due to defects in FAS receptor signaling complex formation as shown by decreased recruitment of FAS and caspase 8 into lipid rafts following antigen re-stimulation in the absence of CD4-dependent signals. In addition, in the absence of CD4-dependent signals, effector T cells have a selective defect in IL-2 secretion following peptide re-stimulation, while provision of exogenous IL-2 during re-stimulation partially restores susceptibility to RICD. Importantly, IL-2 production and proliferation after primary peptide stimulation is comparable between wild type and CD4-deficient T cells indicating that the requirement for CD4-dependent signaling events for IL-2 production is developmentally regulated and is particularly critical in previously activated effector T cells. In total, our results indicate that CD4 co-receptor dependent signaling events specifically regulate effector T cell survival and function. Further, these data suggest that CD4-dependent signaling events may protect against the decreased IL-2 production and resistance to cell death seen during chronic immune stimulation.  相似文献   

13.
Immunogenic cell death induced by anticancer chemotherapy is characterized by a series of molecular hallmarks that include the exodus of high-mobility group box 1 protein (HMGB1) from dying cells. HMGB1 is a nuclear nonhistone chromatin-binding protein. It is secreted at the late stages of cellular demise and engages Toll-like receptor4 (TLR4) on dendritic cells (DCs) to accelerate the processing of phagocytic cargo in the DC and to facilitate antigen presentation by DC to T cells. The absence of HMGB1 expression by dying tumor cells exposed to anthracyclines or oxaliplatin compromises DC-dependent T-cell priming by tumor-associated antigens. Here, we show that transplantable tumors exhibiting weak expression of nuclear HMGB1 respond to chemotherapy more effectively if the treatment is combined with the local or systemic administration of a highly purified and physiochemically defined and standardized lipopolysaccharide solution, which acts as a high-potency and exclusive TLR4 agonist, called Dendrophilin (DEN). The synergistic antitumor effects mediated by the combination of chemotherapy and immunotherapy relied upon the presence of the MyD88 (myeloid differentiation primary response gene) adapter of TLR4 (but not that of the TIR-domain-containing adapter-inducing interferon-β adapter), in line with the well-characterized action of DEN on the MyD88 signaling pathway. DEN and anthracyclines synergized to induce intratumoral accumulation of interferon-γ-producing CD4+ and CD8+ T lymphocytes. Moreover, DEN could restore the immunogenicity of dying tumor cells from which HMGB1 had been depleted by RNA interference. These findings underscore the potential clinical utility of combination regimens involving immunogenic chemotherapy and certain TLR4 agonists in advanced HMGB1-deficient cancers.  相似文献   

14.
Plant proteolytic enzymes: possible roles during programmed cell death   总被引:25,自引:0,他引:25  
Proteolytic enzymes are known to be associated with developmentally programmed cell death during organ senescence and tracheary element differentiation. Recent evidence also links proteinases with some types of pathogen- and stress-induced cell suicide. The precise roles of proteinases in these and other plant programmed cell death processes are not understood, however. To provide a framework for consideration of the importance of proteinases during plant cell suicide, characteristics of the best-known proteinases from plants including subtilisin-type and papain-type enzymes, phytepsins, metalloproteinases and the 26S proteasome are summarized. Examples of serine, cysteine, aspartic, metallo- and threonine proteinases linked to animal programmed cell death are cited and the potential for plant proteinases to act as mediators of signal transduction and as effectors of programmed cell death is discussed.  相似文献   

15.
《Autophagy》2013,9(9):1292-1307
Calreticulin surface exposure (ecto-CALR), ATP secretion, maturation of dendritic cells (DCs) and stimulation of T cells are prerequisites for anticancer therapy-induced immunogenic cell death (ICD). Recent evidence suggests that chemotherapy-induced autophagy may positively regulate ICD by favoring ATP secretion. We have recently shown that reactive oxygen species (ROS)-based endoplasmic reticulum (ER) stress triggered by hypericin-mediated photodynamic therapy (Hyp-PDT) induces bona fide ICD. However, whether Hyp-PDT-induced autophagy regulates ICD was not explored. Here we showed that, in contrast to expectations, reducing autophagy (by ATG5 knockdown) in cancer cells did not alter ATP secretion after Hyp-PDT. Autophagy-attenuated cancer cells displayed enhanced ecto-CALR induction following Hyp-PDT, which strongly correlated with their inability to clear oxidatively damaged proteins. Furthermore, autophagy-attenuation in Hyp-PDT-treated cancer cells increased their ability to induce DC maturation, IL6 production and proliferation of CD4+ or CD8+ T cells, which was accompanied by IFNG production. Thus, our study unravels a role for ROS-induced autophagy in weakening functional interaction between dying cancer cells and the immune system thereby helping in evasion from ICD prerequisites or determinants.  相似文献   

16.
赵萍  王攀  王筱冰 《生命科学》2011,(4):329-334
程序性细胞死亡(programmed cell death,PCD)是指由基因控制的细胞自主的有序性死亡方式,涉及一系列基因的激活、表达以及调控等。目前,经典细胞凋亡被称为Ⅰ型PCD,而自噬性细胞死亡称为Ⅱ型PCD,坏死样程序性细胞死亡则被称为Ⅲ型PCD,它们在肿瘤的发生、发展及治疗过程中起非常重要的作用。该文结合国内外最新研究进展主要针对不同细胞死亡模式及其相互作用、关键作用蛋白,细胞自噬与肿瘤发生,细胞自噬、凋亡与肿瘤治疗作一简要综述,并展望发展前景,提出在肿瘤治疗中如何利用不同死亡模式的协同作用最大限度地发挥其临床应用价值。  相似文献   

17.
Death receptor-induced cell death in prostate cancer   总被引:2,自引:0,他引:2  
Prostate cancer mortality results from metastasis and is often coupled with progression from androgen-dependent to androgen-independent growth. Unfortunately, no effective treatment for metastatic prostate cancer increasing patient survival is available. The absence of effective therapies reflects in part a lack of knowledge about the molecular mechanisms involved in the development and progression of this disease. Apoptosis, or programmed cell death, is a cell suicide mechanism that enables multicellular organisms to regulate cell number in tissues. Inhibition of apoptosis appears to be a critical pathophysiological factor contributing to the development and progression of prostate cancer. Understanding the mechanism(s) of apoptosis inhibition may be the basis for developing more effective therapeutic approaches. Our understanding of apoptosis in prostate cancer is relatively limited when compared to other malignancies, in particular, hematopoietic tumors. Thus, a clear need for a better understanding of apoptosis in this malignancy remains. In this review we have focused on what is known about apoptosis in prostate cancer and, more specifically, the receptor/ligand-mediated pathways of apoptosis as potential therapeutic targets.  相似文献   

18.
Adenosine 5′‐triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane‐associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area.  相似文献   

19.
Cell death in bioreactors: a role for apoptosis   总被引:11,自引:0,他引:11  
The incidence of apoptotic and necrotic cell death was compared in CHO, SF9 insect cells and murine plasmacytoma (J558L) and hybridoma (TB/C3) cells during in vitro cultivation in batch cultures. Acridine orange staining and fluorescence microscopy enabled the visualization of a classic morphological feature of apoptotic cell, the presence of condensed and/or fragmented chromatin. DNA gel electrophoresis was employed to show an additional characteristic of the process, the endonuclease-mediated fragmentation of DNA into multiples of 180 base pairs. The levels of apoptosis at the end of batch cultures of plasmacytoma and hybridoma cell lines were found to be 60% and 90% of total dead cells, respectively. However, employing the above-mentioned techniques, the biochemical and morphological features of apoptosis were not found in CHO and SF9 insect cells. Some factors affecting the induction of apoptosis during the batch culture of the hybridoma and plasmacytoma cell lines were identified. The most effective inducer was found to be glutamine limitation, followed by (in order of importance) serum limitation, glucose limitation, and ammonia toxicity. Blockage of the cell cycle of the plasmacytoma and hybridoma cells using thymidine resulted in the induction of apoptosis. This has important implications for the development of cell culture processes that minimize cell division and thereby increase specific productivity. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号