首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops methods to partition the phenotypic correlation between mates for a focal trait--the standard measure for assortative mating--into a direct component and additional indirect components. Indirect assortative mating occurs when a nonassorting trait is correlated within individuals to a directly assorting trait. Direct and indirect assortative mating is assessed for flowering phenology in Brassica rapa. The flowering time of pollen recipients (mothers) was strongly correlated (rho=0.67) to that of potential pollen donors (fathers). Similarly, recipients and donors were correlated for duration of their flowering periods (rho=0.32) and stem diameters (rho=0.52). A partitioning of between-mate correlations revealed direct assortative mating for flowering time and period duration. However, assortment for stem diameter is explained solely through its correlation to flowering time. Examination of standard quantitative genetic theory shows that indirect assortative mating inflates genetic variance in a focal trait and the genetic covariance between focal and phenotypically correlated traits.  相似文献   

2.
We model the evolution of flowering time using a multilocus quantitative genetic model with non-selective assortative mating and mutation to investigate incipient allochronic speciation in a finite population. For quantitative characters with evolutionary parameters satisfying empirical observations and two approximate inequalities that we derived, disjunct clusters in the population flowering phenology originated within a few thousand generations in the absence of disruptive natural or sexual selection. Our simulations and the conditions we derived showed that cluster formation was promoted by limited population size, high mutational variance of flowering time, short individual flowering phenology and a long flowering season. By contrast, cluster formation was hindered by inbreeding depression, stabilizing selection and pollinator limitation. Our results suggest that incipient allochronic speciation in populations of limited size (satisfying two inequalities) could be a common phenomenon.  相似文献   

3.
Flowering phenology and allozyme variation were studied to test the existence of positive assortative mating for flowering time in a natural population of Primula sieboldii E. Morren, a heterostylous perennial herb, consisting of approximately 180 genets in a deciduous forest. There was significant variation in flowering date among genets, but not between heterostylous morphs. The temporal order of the flowering time of genets was fairly constant for the two years of the study. The spatial heterogeneity of light availability at the study site was small during the flowering season of the species. In order to analyze the extent of genetic differentiation between early- and late-flowering genet groups, allozyme diversities were analyzed with 10 loci. The GST between the early- and late-flowering groups was not significantly different from zero. Evidence of positive assortative mating for flowering time was not detected. Prolongation of flowering duration due to pollen limitation may be one important factor preventing the genetic differentiation of early- and late-flowering groups by enhancing the overlap of flowering time among genets.  相似文献   

4.
In north Georgia populations of the soldier beetle, Chauliognathus pennsylvanicus , the length of the elytral spot varies clinally. At the southern end of a 200 km cline the distribution of spot length is unimodal with longer spot lengths predominating while at the northern end of the cline the distribution is bimodal but with shorter spot lengths being more frequent. North of the cline only short elytral spot lengths are observed, while the converse is true south of the cline. The strength of assortative mating on the basis of elytral spot length increases from south to north along the cline, resulting in complete pre-mating isolation between short and long spot length morphs at the north end of the cline. Laboratory mate choice tests indicate that assortative mating in the field is not the result of differential timing of activity or microhabitat choice but rather that it represents a real behavioural preference. Individuals from monomorphic populations on either side of the cline do not mate assortatively in the laboratory, indicating that reproductive isolation has evolved on the cline.  相似文献   

5.
ABSTRACT.   Sexual size dimorphism (SSD) may be due to sexual and natural selection, but identifying specific mechanisms that generate such dimorphism in a species is difficult. I examined SSD in Carolina Wrens ( Thryothorus ludovicianus ) by examining (1) the degree of SSD in the population and between pairs using five morphometrics, (2) assortative mating patterns based on size and age, and (3) relationships between size and longevity. Analysis revealed that males were significantly larger than females in all body measurements. For example, mass, bill, and wing measurements yielded a canonical variable that permitted separation of the sexes and linear classification functions correctly determined the sex of 95% (238/250) of all wrens measured. No evidence was found to suggest that SSD was related to resource partitioning. However, assortative mating trends based on morphometrics (e.g., wing length), positive associations between longevity and morphometrics (e.g., wing length in females and body size in males), and intense male-male contests for territorial resources year-round provide evidence that sexual selection may contribute to SSD in Carolina Wrens.  相似文献   

6.
Heterozygosity as a target of mate choice has received much attention in recent years and there is growing evidence supporting its role in the evolution of mate preferences. In this study we analyse mating patterns in relation to heterozygosity in a lesser kestrel (Falco naumanni) population intensively monitored over six study years (2002–2007). The magnitude of heterozygosity‐based assortative mating varied over time, being particularly patent in the last study years (2006, 2007). We have found evidence that this mating pattern entails both direct and indirect‐genetic benefits. Clutch size increased with female heterozygosity and more heterozygous males raised a higher number of fledglings particularly in those years when the strength of the heterozygosity‐based assortative mating was markedly higher. In the last study year, parent–offspring correlation of heterozygosity was stronger and higher than the expected if individuals would have randomly mated with respect to heterozygosity. Overall, our results offer empirical support to the heterozygous mate hypothesis of sexual selection but suggest that genetic diversity may act as a temporally variable target for mate choice.  相似文献   

7.
Gene flow is generally considered a random process, that is the loci under consideration have no effect on dispersal success. Edelaar and Bolnick (Trends Ecol Evol, 27, 2012 659) recently argued that nonrandom gene flow could exert a significant evolutionary force. It can, for instance, ameliorate the maladaptive effects of immigration into locally adapted populations. I examined the potential strength for nonrandom gene flow for flowering time genes, a trait frequently found to be locally adapted. The idea is that plants that successfully export pollen into a locally adapted resident population will be a genetically biased subset of their natal population – they will have resident‐like flowering times. Reciprocally, recipients will be more migrant‐like than the resident population average. I quantified the potential for biased pollen exchange among three populations along a flowering time cline in Brassica rapa from southern California. A two‐generation line cross experiment demonstrated genetic variance in flowering time, both within and among populations. Calculations based on the variation in individual flowering schedules showed that resident plants with the most migrant‐like flowering times could expect to have up to 10 times more of the their flowers pollinated by immigrant pollen than the least migrant‐like. Further, the mean flowering time of the pollen exporters that have access to resident mates differs by up to 4 weeks from the mean in the exporters’ natal population. The data from these three populations suggest that the bias in gene flow for flowering time cuts the impact on the resident population by as much as half. This implies that when selection is divergent between populations, migrants with the highest mating success tend to be resident‐like in their flowering times, and so, fewer maladaptive alleles will be introduced into the locally adapting gene pool.  相似文献   

8.
The general hypothesis of mate choice based on non-additive genetic traits suggests that individuals would gain important benefits by choosing genetically dissimilar mates (compatible mate hypothesis) and/or more heterozygous mates (heterozygous mate hypothesis). In this study, we test these hypotheses in a socially monogamous bird, the blue tit (Cyanistes caeruleus). We found no evidence for a relatedness-based mating pattern, but heterozygosity was positively correlated between social mates, suggesting that blue tits may base their mating preferences on partner''s heterozygosity. We found evidence that the observed heterozygosity-based assortative mating could be maintained by both direct and indirect benefits. Heterozygosity reflected individual quality in both sexes: egg production and quality increased with female heterozygosity while more heterozygous males showed higher feeding rates during the brood-rearing period. Further, estimated offspring heterozygosity correlated with both paternal and maternal heterozygosity, suggesting that mating with heterozygous individuals can increase offspring genetic quality. Finally, plumage crown coloration was associated with male heterozygosity, and this could explain unanimous mate preferences for highly heterozygous and more ornamented individuals. Overall, this study suggests that non-additive genetic traits may play an important role in the evolution of mating preferences and offers empirical support to the resolution of the lek paradox from the perspective of the heterozygous mate hypothesis.  相似文献   

9.
We have studied an agent model which presents the emergence of sexual barriers through the onset of assortative mating, a condition that might lead to sympatric speciation. In the model, individuals are characterized by two traits, each determined by a single locus A or B. Heterozygotes on A are penalized by introducing an adaptive difference from homozygotes. Two niches are available. Each A homozygote is adapted to one of the niches. The second trait, called the marker trait has no bearing on the fitness. The model includes mating preferences, which are inherited from the mother and subject to random variations. A parameter controlling recombination probabilities of the two loci is also introduced. We study the phase diagram by means of simulations, in the space of parameters (adaptive difference, carrying capacity, recombination probability). Three phases are found, characterized by (i) assortative mating, (ii) extinction of one of the A alleles and (iii) Hardy-Weinberg like equilibrium. We also make perturbations of these phases to see how robust they are. Assortative mating can be gained or lost with changes that present hysteresis loops, showing the resulting equilibrium to have partial memory of the initial state and that the process of going from a polymorphic panmictic phase to a phase where assortative mating acts as sexual barrier can be described as a first-order transition.  相似文献   

10.
Summary Assortative mating by size is a common mating pattern that can be generated by several different behavioural mechanisms, with different evolutionary implications. Assortative mating is typically associated with sexual selection and has been regarded as an attribute of populations, species, mating systems or even higher order taxa. In most animal groups, however, appropriate analyses of assortative mating at these different levels are lacking and the causes and forms of assortative mating are poorly understood. Here, we analyse 45 different population level estimates of assortative mating and non-random mating by size in seven confamiliar species of water striders that share a common mating system. A hierarchical comparative analysis shows that virtually all the variance within the clade occurs among samples within species. We then employ meta-analysis to estimate the overall strength of assortative mating, to determine the form of assortative mating and to further assess potential differences among species as well as the probable causes of assortative mating in this group of insects. We found overall weak but highly significant positive assortative mating. We show that analyses of the degree of heteroscedasticity in plots of male versus female size are critical, since the evolutionary implications of true and apparent assortative mating differ widely and conclude that the positive assortative mating observed in water striders was of the true rather than the apparent form. Further, within samples, mating individuals were significantly larger than non-mating individuals in both males and females. All of these non-random mating patterns were consistent among species and we conclude that weak positive assortative mating by size is a general characteristic of those water strider species that share this mating system. We use our results to illustrate the importance of distinguishing between different forms of assortative mating, to discriminate between various behavioural causes of assortative mating and to assess potential sources of interpopulational variance in estimates of assortative mating. Finally, we discuss the value of using meta-analytic techniques for detecting overall patterns in multiple studies of non-random mating.  相似文献   

11.
Summary Two simulated data sets, representing random mating and positive assortative mating in a beef cattle population over 10 rounds of mating, were each composed of 100 replicates. Three correlated traits were considered; calving ease (CE), 200 day weight (WW) and postweaning gain (PG). All selection practiced in the simulation was random. Positive assortative mating, which was based on parental WW phenotypic records, increased the progeny additive genetic variance of WW. The absolute values of genetic covariances and correlations between WW with CE and PG were also increased by positive assortative mating. Variances or covariances did not reach their expected equilibrium values due to overlapping generations, low replacement rates and only 10 rounds of mating.The financial assistance of Agriculture Canada and the Natural Sciences and Engineering Research Council of Canada are gratefully acknowledged  相似文献   

12.
The mode in which sexual organisms choose mates is a key evolutionary process, as it can have a profound impact on fitness and speciation. One way to study mate choice in the wild is by measuring trait correlation between mates. Positive assortative mating is inferred when individuals of a mating pair display traits that are more similar than those expected under random mating while negative assortative mating is the opposite. A recent review of 1134 trait correlations found that positive estimates of assortative mating were more frequent and larger in magnitude than negative estimates. Here, we describe the scale‐of‐choice effect (SCE), which occurs when mate choice exists at a smaller scale than that of the investigator's sampling, while simultaneously the trait is heterogeneously distributed at the true scale‐of‐choice. We demonstrate the SCE by Monte Carlo simulations and estimate it in two organisms showing positive (Littorina saxatilis) and negative (L. fabalis) assortative mating. Our results show that both positive and negative estimates are biased by the SCE by different magnitudes, typically toward positive values. Therefore, the low frequency of negative assortative mating observed in the literature may be due to the SCE's impact on correlation estimates, which demands new experimental evaluation.  相似文献   

13.
Reproductive timing is a key life‐history trait that impacts the pool of available mates, the environment experienced during flowering, and the expression of other traits through genetic covariation. Selection on phenology, and its consequences on other life‐history traits, has considerable implications in the context of ongoing climate change and shifting growing seasons. To test this, we grew field‐collected seed from the wildflower Mimulus guttatus in a greenhouse to assess the standing genetic variation for flowering time and covariation with other traits. We then created full‐sib families through phenological assortative mating and grew offspring in three photoperiod treatments representing seasonal variation in daylength. We find substantial quantitative genetic variation for the onset of flowering time, which covaried with vegetative traits. The assortatively‐mated offspring varied in their critical photoperiod by over two hours, so that families differed in their probability of flowering across treatments Allocation to flowering and vegetative growth changed across the daylength treatments, with consistent direction and magnitude of covariation among flowering time and other traits. Our results suggest that future studies of flowering time evolution should consider the joint evolution of correlated traits and shifting seasonal selection to understand how environmental variation influences life histories.  相似文献   

14.
Erlandsson  J.  Rolán-Alvarez  E. 《Hydrobiologia》1998,378(1-3):59-69
Two independent components of mating behaviour, sexual selection and assortative mating, were studied in two allopatric morphs, one sheltered boulder shore form (S-morph) and one exposed cliff shore form (E-morph), of Littorina saxatilis from the west coast of Sweden. Sexual selection was studied by comparing the sizes of copulating and non-copulating snails in the field. Size assortative mating was studied by collecting copulating pairs in the field, while assortative mating between morphs was investigated by bringing the pure morphs together in intermediary habitats and then noting the matings. The S-morph mated randomly in relation to size in two of the studied populations and exhibited a trend towards size assortative mating in a third, while the E-morph showed size assortative mating in both studied populations. The microdistribution of sizes of snails on the shores could not explain all the size assortative mating found, and instead it is argued that a size-based mate rejection behaviour also contributes to the assortative mating in at least some of these populations. There was sexual selection on size in both males and females in the S-morph, with large individuals being favoured as mates. In contrast, copulating snails of the E-morph were smaller than non-copulating ones. The significantly different sexual selection intensities between the two morphs may help to explain the size differences between them. There was random mating between the E- and the S-morphs of L. saxatilis, which suggests no incipient reproductive isolation between morphs on Swedish rocky shores. This is in agreement with earlier studies of Swedish populations, but is in contrast to the situation found in other geographical areas.  相似文献   

15.
Summary Three types of genes have been proposed to promote sympatric speciation: habitat preference genes, assortative mating genes and habitat-based fitness genes. Previous computer models have analysed these genes separately or in pairs. In this paper we describe a multilocus model in which genes of all three types are considered simultaneously. Our computer simulations show that speciation occurs in complete sympatry under a broad range of conditions. The process includes an initial diversification phase during which a slight amount of divergence occurs, a quasi-equilibrium phase of stasis during which little or no detectable divergence occurs and a completion phase during which divergence is dramatic and gene flow between diverging habitat morphs is rapidly eliminated. Habitat preference genes and habitat-specific fitness genes become associated when assortative mating occurs due to habitat preference, but interbreeding between individuals adapted to different habitats occurs unless habitat preference is almost error free. However, nonhabitat assortative mating, when coupled with habitat preference can eliminate this interbreeding. Even when several loci contribute to the probability of expression of non-habitat assortative mating and the contributions of individual loci are small, gene flow between diverging portions of the population can terminate within less than 1000 generations.  相似文献   

16.
Founder-flush speciation models propose that population bottlenecks can enhance evolutionary potential for reproductive isolation. To test this prediction, we subjected bottlenecked (three-pair founder-flush) and nonbottlenecked populations of the housefly to 18 generations of selection for assortative mating. After the selection regime, we analysed videotaped courtship bouts in these lines to identify correlated responses to the selection protocol. The realized heritabilities for assortative mating for both the bottlenecked and nonbottlenecked treatments were very low, but still significant. The founder-flush populations had thus responded to selection as well as the nonbottlenecked populations, although not significantly greater (i.e. total increases in assortative mating were 9.6 and 8.6%, respectively). Multivariate analyses on the courtship repertoires found that, although both bottlenecked and nonbottlenecked treatments attained similar levels of assortative mating, the treatments exhibited different evolutionary solutions in their correlated responses. Specifically, the bottlenecked lines demonstrated a significantly more diverse set of evolutionary trajectories (i.e. significant shifts along the second principal component for courtship). This suggests that the bottlenecked lines had greater potential for the evolution of novel phenotypes as predicted by founder-induced speciation models. Our results, however, cannot distinguish whether the more variable evolutionary responses resulted from increased heritabilities in courtship components, reduced potential to follow the convergent evolutionary trajectories noted for the nonbottlenecked lines, or some combination of both general processes in determining the resultant multivariate phenotype.  相似文献   

17.
We review the evidence for genetic variation in female and male mate preferences. Genetic differences between species and partially isolated races show that preferences can evolve and were genetically variable in the past. Within populations there is good evidence of genetic variation, both of discrete genetic effects (8 cases) and quantitative genetic effects (17 cases), from a diverse range of taxa. We also review evidence for the presence of genetic covariance between mate preferences and sexual traits in the other sex. The 11 studies go a long way to validating the theoretical prediction of positive genetic covariance. The few negative results are best explained by a lack of appropriate experimental design. One unresolved question is whether genetic covariance is due to linkage disequilibrium between unlinked genes or physical linkage. Some evidence points to linkage disequilibrium but this is not yet conclusive.  相似文献   

18.
A two-locus haploid model of sexual selection is investigated to explore evolution of disassortative and assortative mating preferences based on imprinting. In this model, individuals imprint on a genetically transmitted trait during early ontogeny and choosy females later use those parental images as a criterion of mate choice. It is assumed that the presence or absence of the female preference is determined by a genetic locus. In order to incorporate such mechanisms as inbreeding depression and heterozygous advantage into our haploid framework, we assume that same-type matings are less fertile than different-type mating. The model suggests that: if all the females have a disassortative mating preference a viability-reducing trait may be maintained even without the fertility cost of same-type matings; a disassortative mating preference can be established even if it is initially rare, when there is a fertility cost of same-type matings. Further, an assortative mating preference is less likely to evolve than a disassortative mating preference. The model may be applicable to the evolution of MHC-disassortative mating preferences documented in house mice and humans.  相似文献   

19.
Summary We tested the adaptive significance of flowering synchrony by means of a quantitative analysis of selection and by flowering induction experiments with the deciduous shrubErythroxylum havanense. Temporal schedules of flower and fruit production were determined for a local population (in three sites) in a Mexican seasonal forest for 2 years (1987–1988). The consequences of natural variation in flowering time (flowering initiation day) on maternal reproductive success (fecundity) were evaluated. We observed high levels of inter- and intraindividual flowering synchrony in 1987, but not in 1988 and this contrast was related to differences in rainfall patterns between the two years. A significant proportion (15.4%) of the phenotypic variation in flowering initiation day was accounted for by environmental variance. The expression of phenotypic variance of flowering time and, consequently, the opportunity for selection to act, are controlled by annual variation in rainfall. Despite the between-year difference in flowering synchrony, we detected a relatively intense directional selection on flowering initiation day in both years, but selection coefficients were of opposite sign (standardized directional gradients were –0.326 and 0.333 for 1987 and 1988, respectively). For both years there was a significant relationship between individual relative fitness and the number of neighbouring flowering plants in a given day, suggesting positive frequency-dependent selection.  相似文献   

20.
We have examined the fitness consequences of random and potentially non-random matings within two populations taken from inside, and two from outside a hybrid zone in Chorthippus parallelus. When given the opportunity to mate non-randomly, females from all populations laid egg pods more quickly than females obliged to mate at random. A range of fitness parameters measured on the offspring did not show increased fitness following potential non-random mating for any population. However, in non-hybrid populations, the sons of non-randomly mated females had about twice the mating success of the sons of those females forced to mate at random, suggesting the existence of heritable variation for male reproductive success. Hybrid dysfunction did not occur amongst the offspring of randomly mated hybrid females, demonstrating that the lack of dysfunction within these populations is not due to the evolution of assortative mating within them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号