首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by loss or mutations of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to degeneration and death of motor neurons. In this study, we have analyzed the nuclear reorganization of Cajal bodies, PML bodies and nucleoli in type I SMA motor neurons with homozygous deletion of exons 7 and 8 of the SMN1 gene. Western blot analysis revealed a marked reduction of SMN levels compared to the control sample. Using a neuronal dissociation procedure to perform a careful immunocytochemical and quantitative analysis of nuclear bodies, we demonstrated a severe decrease in the mean number of Cajal bodies per neuron and in the proportion of motor neurons containing these structures in type I SMA. Moreover, most Cajal bodies fail to recruit SMN and spliceosomal snRNPs, but contain the proteasome activator PA28γ, a molecular marker associated with the cellular stress response. Neuronal stress in SMA motor neurons also increases PML body number. The existence of chromatolysis and eccentric nuclei in SMA motor neurons correlates with Cajal body disruption and nucleolar relocalization of coilin, a Cajal body marker. Our results indicate that the Cajal body is a pathophysiological target in type I SMA motor neurons. They also suggest the Cajal body-dependent dysfunction of snRNP biogenesis and, therefore, pre-mRNA splicing in these neurons seems to be an essential component for SMA pathogenesis.  相似文献   

3.
4.
Spinal muscular atrophy (SMA), which is caused by inactivating mutations in the survival motor neuron 1 (SMN1) gene, is characterized by loss of lower motor neurons in the spinal cord. The gene encoding SMN is very highly conserved in evolution, allowing the disease to be modeled in a range of species. The similarities in anatomy and physiology to the human neuromuscular system, coupled with the ease of genetic manipulation, make the mouse the most suitable model for exploring the basic pathogenesis of motor neuron loss and for testing potential treatments. Therapies that increase SMN levels, either through direct viral delivery or by enhancing full-length SMN protein expression from the SMN1 paralog, SMN2, are approaching the translational stage of development. It is therefore timely to consider the role of mouse models in addressing aspects of disease pathogenesis that are most relevant to SMA therapy. Here, we review evidence suggesting that the apparent selective vulnerability of motor neurons to SMN deficiency is relative rather than absolute, signifying that therapies will need to be delivered systemically. We also consider evidence from mouse models suggesting that SMN has its predominant action on the neuromuscular system in early postnatal life, during a discrete phase of development. Data from these experiments suggest that the timing of therapy to increase SMN levels might be crucial. The extent to which SMN is required for the maintenance of motor neurons in later life and whether augmenting its levels could treat degenerative motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), requires further exploration.  相似文献   

5.

Background  

Deletion or mutation(s) of the survival motor neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA). The SMN protein is known to play a role in RNA metabolism, neurite outgrowth, and cell survival. Yet, it remains unclear how SMN deficiency causes selective motor neuron death and muscle atrophy seen in SMA. Previously, we have shown that skin fibroblasts from SMA patients are more sensitive to the DNA topoisomerase I inhibitor camptothecin, supporting a role for SMN in cell survival. Here, we examine the potential mechanism of camptothecin sensitivity in SMA fibroblasts.  相似文献   

6.
7.
8.
Mouse models of human disease are an important tool for studying disease mechanism and manifestation in a way that is physiologically relevant. Spinal muscular atrophy (SMA) is a neurodegenerative disease that is caused by deletion or mutation of the survival motor neuron gene (SMN1). The SMA disease is present in a spectrum of disease severities ranging from infant mortality, in the most severe cases, to minor motor impairment, in the mildest cases. The variability of disease severity inversely correlates with the copy number, and thus expression of a second, partially functional survival motor neuron gene, SMN2. Correspondingly, a plethora of mouse models has been developed to mimic these different types of SMA. These models express a range of SMN protein levels and extensively cover the severe and mild types of SMA, with neurological and physiological manifestation of disease supporting the relevance of these models. The SMA models provide a strong background for studying SMA and have already shown to be useful in pre-clinical therapeutic studies. The purpose of this review is to succinctly summarize the genetic and disease characteristic of the SMA mouse models and to highlight their use for therapeutic testing.  相似文献   

9.
Monani UR 《Neuron》2005,48(6):885-896
Spinal muscular atrophy (SMA) is a neurodegenerative disease in humans and the most common genetic cause of infant mortality. The disease results in motor neuron loss and skeletal muscle atrophy. Despite a range of disease phenotypes, SMA is caused by mutations in a single gene, the Survival of Motor Neuron 1 (SMN1) gene. Recent advances have shed light on functions of the protein product of this gene and the pathophysiology of the disease, yet, fundamental questions remain. This review attempts to highlight some of the recent advances made in the understanding of the disease and how loss of the ubiquitously expressed survival of motor neurons (SMN) protein results in the SMA phenotype. Answers to some of the questions raised may ultimately result in a viable treatment for SMA.  相似文献   

10.
Mutations in the SMN1 (survival motor neuron 1) gene cause spinal muscular atrophy (SMA). We now show that SMN protein, the SMN1 gene product, interacts directly with the tumor suppressor protein, p53. Pathogenic missense mutations in SMN reduce both self-association and p53 binding by SMN, and the extent of the reductions correlate with disease severity. The inactive, truncated form of SMN produced by the SMN2 gene in SMA patients fails to bind p53 efficiently. SMN and p53 co-localize in nuclear Cajal bodies, but p53 redistributes to the nucleolus in fibroblasts from SMA patients. These results suggest a functional interaction between SMN and p53, and the potential for apoptosis when this interaction is impaired may explain motor neuron death in SMA.  相似文献   

11.
Spinal muscular atrophy (SMA) is a devastating and often fatal neurodegenerative disease that affects spinal motor neurons and leads to progressive muscle wasting and paralysis. The survival of motor neuron (SMN) gene is mutated or deleted in most forms of SMA, which results in a critical reduction in SMN protein. Motor neurons appear particularly vulnerable to reduced SMN protein levels. Therefore, understanding the functional role of SMN in protecting motor neurons from degeneration is an essential prerequisite for the design of effective therapies for SMA. To this end, there is increasing evidence indicating a key regulatory antiapoptotic role for the SMN protein that is important in motor neuron survival. The aim of this review is to highlight key findings that support an antiapoptotic role for SMN in modulating cell survival and raise possibilities for new therapeutic approaches.  相似文献   

12.
13.
14.

Background

Spinal Muscular Atrophy (SMA) is one of the most common inherited causes of infant death and is caused by the loss of functional survival motor neuron (SMN) protein due to mutations or deletion in the SMN1 gene. One of the treatment strategies for SMA is to induce the expression of the protein from the homologous SMN2 gene, a rescuing paralog for SMA.

Methods and results

Here we demonstrate the promise of pharmacological modulation of SMN2 gene by BAY 55-9837, an agonist of the vasoactive intestinal peptide receptor 2 (VPAC2), a member of G protein coupled receptor family. Treatment with BAY 55-9837 lead to induction of SMN protein levels via activation of MAPK14 or p38 pathway in vitro. Importantly, BAY 55-9837 also ameliorated disease phenotype in severe SMA mouse models.

Conclusion

Our findings suggest the VPAC2 pathway is a potential SMA therapeutic target.  相似文献   

15.
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.  相似文献   

16.
Infantile spinal muscular atrophy (SMA) is characterized by loss of motor neurons in the ventral horn of the spinal cord leading to weakness and muscle atrophy and occurs as a result of homozygous deletions or mutations in the survival motor neuron (SMN 1) gene. Loss of SMN 1 leads to a dramatic reduction in survival motor neuron (SMN) protein in the motor neurons of the spinal cord and of the brain stem. The SMA disease severity ranges from extremely severe to a relatively mild adult onset form of proximal muscle atrophy. More recently, clinical case reports in patients and studies in animal models provided evidence that severe SMN protein deficiency not only results in loss of motor neurons but also to additional organ manifestations. These include the peripheral, central and autonomic nervous system, development and function of the heart and the digestive tract and metabolic deficiencies. Therefore, to develop the most efficient therapeutic approach and also prevent further complications in patients that may arise with extended survival following therapeutic interventions, it is necessary to investigate in detail the specific damage to every system independently. The comparison of the defects in SMA mouse models will provide valuable insights; however, phenotypic differences between mice and men still remain.  相似文献   

17.

Background  

The motor neuron degenerative disease spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality and is caused by mutations in the survival of motor neurons (SMN) gene that reduce the expression levels of the SMN protein. A major goal of current therapeutic approaches is to increase SMN levels in SMA patients. The purpose of this study was to develop a reliable assay to measure SMN protein levels from peripheral blood samples.  相似文献   

18.
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.  相似文献   

19.
Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号