首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Leaf dynamics and standing stocks of intertidal seagrasses were studied in the Baie d'Aouatif (Parc National du Banc d'Arguin, Mauritania) in April and September 1988. Standing stocks of Zostera noltii Hornem. suggest a unimodal seasonal curve similar to what is found for populations at higher latitudes. Also, leaf growth rates (0.03 cm2 cm–2 day–1 on average) were similar to those found at higher latitudes in these months. Variation in leaf loss over tidal depth, time and different locations in the Baie d'Aouatif was larger and more often significant than variation in leaf growth. In general, Z. noltii beds in the Baie d'Aouatif had comparable leaf growth rates and standing stocks. In both months losses were almost always higher than or equal to growth.Variation in leaf loss over time was much higher in the plots that were situated high in the intertidal than in lower plots. This is explained by differences in susceptibility to sloughing, which is presumably higher in periods with low tide around noon for shallow depths.In an experiment using artificial shading nets, in situ leaf growth was affected negatively from 94% shading onwards. This shading was observed to reduce the light intensity reaching the seagrass bed to a level below the reported range of light compensation points for Z. noltii. Cymodocea nodosa (Ucria) Ascherson on average had higher leaf area and relative growth rates than Z. noltii and much lower loss rates, resulting in a positive net increase in September. Standing stocks were also higher than for Z. noltii. A mixed seagrass bed containing the above two species and Halodule wrightii Ascherson had the highest observed total biomass: 335 g m–2 ash-free dry weight.  相似文献   

2.
Seagrasses are well known ecosystem engineers that can significantly influence local hydrodynamics and the abundance and biodiversity of macrobenthic organisms. This study focuses on the potential role of the seagrass canopy structure in altering the abundance of filter-feeding organisms by modifying the hydrodynamic driven food supply. We quantified the effect of two ecosystem engineers with contrasting canopy properties (i.e. Zostera noltii and Cymodocea nodosa) on the food intake rate of a suspension-feeding bivalve Cerastoderma edule living in these seagrass meadows. Field experiments were carried out in two seagrass beds (Z. noltii and C. nodosa) and bare sediment, located on sandflat characterised by a relatively high hydrodynamic energy from waves and currents. Results demonstrated that the filter-feeding rate was almost twofold increased when C. edule was inhabiting Z. noltii meadows (1.10 ± 0.24 μg Chl g Fresh Weight−1) when compared to cockles living on the bare sediment (0.65 ± 0.14 μg Chl g FW−1). Intermediate values were found within C. nodosa canopy (0.97 ± 0.24 μg Chl g FW−1), but filter feeding rate showed no significant differences with values for Z. noltii meadows. There were no apparent correlations between canopy properties and filter-feeding rates. Our results imply that food refreshment within the seagrass canopies was enough to avoid food depletion. We therefore expect that the ameliorated environmental conditions within vegetated areas (i.e. lower hydrodynamic conditions, higher sediment stability, lower predation pressure…) in combination with sufficient food supply to prevent depletion within both canopies are the main factors underlying our observations.  相似文献   

3.
Detritus of the seagrasses Zostera noltii and Z. marina collected on the beaches of Arcachon Lagoon (France) over a 3-year period was screened as a new source of zosteric acid (ZA). This natural sulphated phenolic acid is a high value-added product capable of preventing settlement of marine organisms and protecting crops from fungal diseases. The seasonal variation of the ZA content was quantified in methanolic and aqueous crude extracts using high-performance liquid chromatography. The concentration found ranged from 65 to 456 μg g−1 dry wt for Z. noltii and 51–692 μg g−1 dry wt for Z. marina, respectively. This is the first report of ZA in Zostera noltii. Detrital leaves of Zostera have never before been screened for their bioactive substances. These results show that this low cost, very abundant and renewable, but heretofore unused, marine resource has potential as a source of a rare and naturally occurring bioactive product.  相似文献   

4.
The chromosome numbers of the five European seagrasses have been determined in material from several sites along the coasts of the Atlantic Ocean, the North Sea and the Mediterranean:Zostera marina L., 2n = 12;Z. noltii Hornem., 2n = 12;Posidonia oceanica (L.)Delile, 2n = 20;Cymodocea nodosa (Ucria)Aschers., 2n = 14, 2n = 28;Halophila stipulacea (Forsk.)Aschers., 2n = 18. The difference in chromosome morphology betweenZ. marina andZ. noltii supports the division of the genus into two subgenera.  相似文献   

5.
The rate of emergence of micropredatory gnathiid isopods from the benthos, the proportion of emerging gnathiids potentially eaten by Labroides dimidiatus, and the volume of blood that gnathiids potentially remove from fishes (using gnathiid gut volume) were determined. The abundance (mean ±s.e .) of emerging gnathiids was 41·7 ± 6·9 m?2 day?1 and 4552 ± 2632 reef?1 day?1 (reefs 91–125 m2). The abundance of emerging gnathiids per fish on the reef was 4·9 ± 0·8 day?1; but excluding the rarely infested pomacentrid fishes, it was 20·9 ± 3·8 day?1. The abundance of emerging gnathiids per patch reef was 66 ± 17% of the number of gnathiids that all adult L. dimidiatus per reef eat daily while engaged in cleaning behaviour. If all infesting gnathiids subsequently fed on fish blood, their total gut volume per reef area would be 17·4 ± 5·6 mm3 m?2 day?1; and per fish on the reefs, it would be 2·3 ± 0·5 mm?3 fish?1 day?1 and 10·3 ± 3·1 mm3 fish?1 day?1 (excluding pomacentrids). The total gut volume of gnathiids infesting caged (137 mm standard length, LS) and removed from wild (100–150 mm LS) Hemigymnus melapterus by L. dimidiatus was 26·4 ± 24·6 mm3 day?1 and 53·0 ± 9·6 mm3 day?1, respectively. Using H. melapterus (137 mm LS, 83 g) as a model, gnathiids had the potential to remove, 0·07, 0·32, 0·82 and 1·63% of the total blood volume per day of each fish, excluding pomacentrids, caged H. melapterus and wild H. melapterus, respectively. In contrast, emerging gnathiids had the potential of removing 155% of the total blood volume of Acanthochromis polyacanthus (10·7 mm LS, 0·038 g) juveniles. That L. dimidiatus eat more gnathiids per reef daily than were sampled with emergence traps suggests that cleaner fishes are an important source of mortality for gnathiids. Although the proportion of the total blood volume of fishes potentially removed by blood‐feeding gnathiids on a daily basis appeared to be low for fishes weighing 83 g, the cumulative effects of repeated infections on the health of such fish remains unknown; attacks on small juvenile fishes, may result in possibly lethal levels of blood loss.  相似文献   

6.
In the present study, we compared the clonal architecture between two seagrass species, the dioecious Cymodocea nodosa and the hermaphroditic, self-compatible Zostera noltii, in order to verify the hypothesis that clonal growth strategies and resulting genet architecture are associated with mating system in clonal plants. It is expected that self-incompatible species should be associated to a guerrilla growth form, because of pollen limitation due to obligate outbreeding, while the ecologically advantageous phalanx strategy can be adopted in self-compatible species. Genotypic diversity and heterozygosity were also assessed in the two species. Sampling has been conducted in mixed stands, collecting shoots of the two species at the same points of the sampling grid, in order to even out any effects of environmental heterogeneity. Species-specific microsatellite loci have been used as molecular markers to identify clones and assess their spatial distribution in both species. As expected, we found an intermingled configuration of genets in the dioecious C. nodosa while Z. noltii was characterized by a clumped, `phalanx-type' distribution of clones. C. nodosa was characterized by higher genotypic diversity with regard to Z. noltii, while heterozygosity levels were comparable in the two species. Coordinating Editor: Dr J. Tuomi  相似文献   

7.
Telemetered heart rate (fH) was examined as an indicator of activity and oxygen consumption rate (VO2) in adult, cultivated, Atlantic salmon, Salmo salar L. Heart rate was measured during sustained swimming in a flume for six fish at 10° C [mean weight, 1114 g; mean fork length (f. l.), 50·6 cm] and seven fish at 15° C (mean weight, 1119 g; mean f. l., 50·7 cm) at speeds of up to 2·2 body lengths/s. Semi–logarithmic relationships between heart rate and swimming speed were obtained at both temperatures. Spontaneously swimming fish in still water exhibited characteristic heart rate increases associated with activity. Heart rate and Vo2 were monitored simultaneously in a 575–1 circular respirometer for six fish (three male, three female) at 4° C (mean weight, 1804 g; mean F. L., 62· cm) and six fish (three male, three female) at 10° C (mean weight, 2045 g; mean f. l., 63·2 cm) during spontaneous but unquantified activity. Linear regressions were obtained by transforming data for both fH and Vo2 to log values. At each temperature, slopes of the regressions between fH and Vo2 for individual fishes were not significantly different, but in some cases elevations were. All differences in elevation were between male and female fish. There were no significant differences in regression slope or elevation for fish of the same sex at the two temperatures and so regressions were calculated for the sexes, pooling data from 4 and 10° C. There was no significant difference in the mean ± S. D. Vo2 between the sexes at 4° C (male, 66·0 ± 59·6 mgO2 kg?1 h?1; female, 88·0 ± 60·1 mgO2 kg?1 h?1) or 10° C (male, 166·2 ± 115·4 mgO2 kg?1 h?1; female, 169·2 ± 111–1 mgO2 kg?1h?1). Resting Vo2 (x?± s. d.) at 4°C was 36·7 ± 8.4 mgO2 kg?1 h?1, and 10° C was 72·8 ± 11·9 mgO2 kg?1 h?1. Maximum Vo2 (x?± S. D.) at 4° C was 250·6 ± 40·2 mgO2 kg?1 h?1, and at 10° C was 423·6 ± 25·2 mgO2 kg?1 h?1. Heart rate appears to be a useful indicator of metabolic rate over the temperature range examined, for the cultivated fish studied, but it is possible that the relationship for wild fish may differ.  相似文献   

8.
Marbà N  Hemminga MA  Duarte CM 《Oecologia》2006,150(3):362-372
The allometric scaling of resource demand and translocation within seagrass clones to plant size (i.e. shoot mass and rhizome diameter), shoot production and leaf turnover was examined in situ in eight seagrass species (Cymodocea nodosa, Cymodocea serrulata, Halophila stipulacea, Halodule uninervis, Posidonia oceanica, Thalassodendron ciliatum, Thalassia hemprichii and Zostera noltii), encompassing most of the size range present in seagrass flora. One fully developed shoot on each experimental rhizome was incubated for 2–3 h with a pulse of NaH13CO3 (235 μmol) and 15NH4Cl (40 μmol). The mobilisation of incorporated tracers across the clone was examined 4 days later. Carbon and nitrogen demand for shoot production across seagrass species scaled at half of the shoot mass, whereas seagrass leaves incorporated tracers (13C and 15N) at rates proportional to the shoot mass. The shoots of all seagrass species shared resources with neighbours, particularly with younger ones. The time scales of physiological integration and the absolute amount of resources shared by seagrass ramets scaled at 2.5 power of the rhizome diameter. Hence, the ramets of larger species were physiologically connected for longer time scales and share larger absolute amounts of resources with neighbours than those of smaller species. The different pattern of resource translocation exhibited by seagrasses helps explain the ecological role displayed by these species and the success of large seagrasses colonising nutrient-poor coastal areas, where they often dominate.  相似文献   

9.
When two ecosystem engineers share the same natural environment, the outcome of their interaction will be unclear if they have contrasting habitat-modifying effects (e.g., sediment stabilization vs. sediment destabilization). The outcome of the interaction may depend on local environmental conditions such as season or sediment type, which may affect the extent and type of habitat modification by the ecosystem engineers involved. We mechanistically studied the interaction between the sediment-stabilizing seagrass Zostera noltii and the bioturbating and sediment-destabilizing lugworm Arenicola marina, which sometimes co-occur for prolonged periods. We investigated (1) if the negative sediment destabilization effect of A. marina on Z. noltii might be counteracted by positive biogeochemical effects of bioirrigation (burrow flushing) by A. marina in sulfide-rich sediments, and (2) if previously observed nutrient release by A. marina bioirrigation could affect seagrasses. We tested the individual and combined effects of A. marina presence and high porewater sulfide concentrations (induced by organic matter addition) on seagrass biomass in a full factorial lab experiment. Contrary to our expectations, we did not find an effect of A. marina on porewater sulfide concentrations. A. marina activities affected the seagrass physically as well as by pumping nutrients, mainly ammonium and phosphate, from the porewater to the surface water, which promoted epiphyte growth on seagrass leaves in our experimental set-up. We conclude that A. marina bioirrigation did not alleviate sulfide stress to seagrasses. Instead, we found synergistic negative effects of the presence of A. marina and high sediment sulfide levels on seagrass biomass.  相似文献   

10.
The coast of the Yellow Sea in China, like many other temperate coastal zones, has been experiencing a dramatic decline in the abundance of seagrass. Intensive efforts have been made to restore seagrass communities along the coast to restore the function of the coastal ecosystem. Transplanting adult Zostera marina shoots is labor‐intensive, time‐consuming, expensive, and detrimental to donor beds; thus, restoring seagrass communities through the use of seeds is highly valued in current, large‐scale restoration trials. In this study, an effective method for collecting, processing, and storing Z. marina seeds was developed. From 2009 to 2013, respectively, 122,000, 421,000, 364,000, 1,041,000, and 1,091,000 seeds were successfully collected. Two‐way analysis of variance (ANOVA) showed the interaction between salinity and temperature significantly affected the cumulative germination rate (CGR) (p < 0.01) during the storage period and the viability (p < 0.01) of seeds after storage. The germination rate after storage was significantly affected by salinity and temperature (p < 0.01). The highest viability (89.8 ± 1.0%) and germination rate (75.6 ± 4.5%) were found among seeds stored at 4°C and a salinity of 44.5 psu for 7 months. The cost for planting 1 ha of sea bottom with Z. marina seeds ranged from $2,613 to $80,900 depending on the seeding density and seed loss during storage. The average cost per Z. marina seed in this study was $0.00586.  相似文献   

11.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

12.
Neonatal exposure to bisphenol A (BPA) is hypothesized to advance pubertal development. However, the effects of neonatal BPA exposure on pubertal development has not been described. In this study, female Sprague‐Dawley rats were exposed to 0.05, 0.5, 5, or 10 mg·kg?1·day?1 BPA, or corn oil vehicle alone from postnatal day 1 (PND1) to PND10 via subcutaneous injection. We evaluated day of vaginal opening (DVO), ovarian morphology, serum hormone concentrations, and hypothalamic expression of Gnrh1 and Kiss1 in female rats at PND35. DVO was significantly advanced in rats exposed to 5 and 10 mg·kg?1·day?1 BPA. Serum hormone concentrations increased as BPA dose increased. Additionally, hypothalamic Gnrh1 and Kiss1 expression were increased with BPA exposure; rats exposed to 10 mg·kg?1·day?1 BPA had significantly upregulated hypothalamic Gnrh1 and Kiss1 expressions in terms of both messenger RNA and protein levels. Our results suggest that exposure to a 10 mg·kg?1·day?1 dose of BPA might advance pubertal development significantly. In addition, within the range of 0 to 10 mg·kg?1·day?1, neonatal exposure to BPA may affect pubertal development in a dose‐dependent manner.  相似文献   

13.
Totoaba Totoaba macdonaldi and shortfin corvina Cynoscion parvipinnis, were acclimated and reared together at salinities of 0, 2, 5, 10, 20 and 35 for 56 days. Initial overall mean ± s.d . body masses of 67·6 ± 7·1 g T. macdonaldi and 37·3 ± 3·1 g C. parvipinnis increased to final overall masses of 217·4 ± 30·3 and 96·5 ± 16·5 g, respectively, at the end of the study. Totoaba macdonaldi was not able to tolerate salinities of 0 and 2 and C. parvipinnis of 0. In contrast, both species had 100% survival at salinities ≥ 10. Somatic growth was highest not at natural seawater salinity of 35, but at 10. Plasma osmolality ranged from 172·5 to 417·0 mOsmol kg?1 for T. macdonaldi and from 207·0 to 439·5 mOsmol kg?1 for C. parvipinnis and varied in direct proportion to salinity. The estimated isosmotic salinities of T. macdonaldi and C. parvipinnis were 12·3 and 13·4, respectively. Cynoscion parvipinnis reared at two had significantly lower plasma lysozyme activity (95·0 Units ml?1) than fish held at salinities from 5 to 35 (ranging from 215·0 to 355·0 Units ml?1), but without clear trends over this range. Blood neutrophil oxidative radical production (NBT) (ranging from 3·9 to 6·7 mg ml?1) had some significant differences among salinities, but these did not follow a clear pattern. For T. macdonaldi, neither lysozyme activity nor NBT was affected by salinity. Ash content of whole fishes varied directly and moisture content inversely, with salinity for both species.  相似文献   

14.
Zostera marina is the only seagrass species whose seeds have been successfully used in large‐scale restoration. Although progress has been made in refining Z. marina restoration protocols, additional information on Z. marina seed physiology is necessary as the science of seagrass restoration evolves. We tested the germination rates of Z. marina seeds under different relative humidities and temperatures for different periods of time. Z. marina seed moisture content (MC) and germination rates were also tested when seeds were exposed to a temperature of 25°C and relative humidity of 50%. Z. marina seeds suffered higher mortality when exposed to lower relative humidity and higher temperature for longer period of exposure time. A significant negative correlation was detected between seed germination rate and MC. Z. marina seeds are sensitive to desiccation exposure and long periods of exposure to air should be prevented to minimize seed mortality when seeds are used in restoration projects.  相似文献   

15.
1. The release of total phosphorus (TP) and nitrogen (N in ammonium) was measured for the five most abundant fish species (>85% of biomass) in Mouse and Ranger Lakes, two biomanipulated, oligotrophic lakes in Ontario. 2. The specific release rate of both nutrients was significantly related to fish mass; log10 TP release rate (μg h?1) = 0.793 (±0.109) [log10 wet mass (g)] + 0.7817 (±0.145), and log10 N release rate (μg h?1) = 0.6946 (±0.079) [log10wet mass (g)] + 1.7481 (±0.108). 3. When fish nutrient release was standardized for abundance (all populations, 1993–95) and epilimnetic volume, fish were estimated to contribute 0.083 (±0.061) μg TP L?1 day?1, and 0.41 (±0.17) μg N L?1 day?1 in Mouse L., and 0.062 (±0.020) μg TP L?1 day?1 and 0.31 (±0.08) μg N L?1 day?1 in Ranger L. 4. In comparison, concurrent rates of total planktonic P regeneration were 1.02 (±0.45) μg L?1 day?1 (Mouse L.) and 0.85 (±0.19) μg L?1 day?1 (Ranger L.). Fish represented 8% of planktonic P release in Mouse L. and 7% in Ranger L. 5. Fish dry mass had mean elemental body compositions of 39.3% carbon, 10.9% nitrogen, and 4.0% phosphorus (all fish combined), with a mean molar C : N : P ratio of 27 : 6 : 1. This comprised about 55% and 23% of the total epilimnetic particulate P and N respectively. 6. Turnover times of P and N in fish were approximately 103 and 48 days respectively. In comparison, planktonic turnover times of particulate P in Mouse and Ranger Lakes were 4.3 and 4.4 days respectively. Given their high P content and low turnover rates, fish appear to be important P sinks in lakes.  相似文献   

16.
The dwarf seagrass Zostera noltii is an important primary producer in Atlantic coastal ecosystems from Mauritania to southern Norway and the Mediterranean Sea. Sessile intertidal organisms existing at the interface between marine and terrestrial environments may be particularly vulnerable to environmental change. In this study, we asked how near to thermal tolerance limits natural populations of Z. noltii are in the Ria Formosa coastal lagoon system in southern Portugal. We recorded the maximum temperatures in the Ria Formosa during the 2007 summer, and conducted experiments to determine the sub-lethal temperature of Z. noltii shoots sampled at two sites located at different tidal heights. Mortality rates and photosynthetic performance were recorded within a range of heat shock temperatures between 35 and 41°C. Survival was recorded ≤37°C, while higher temperatures led to a sudden drop in photosynthetic capacity followed by mortality (shoot loss) that occurred more rapidly with increasing temperatures. At 39°C and above, the rate of shoot mortality in both sites was close to 100%, occurring between 5 and 13 days after the heat shock. Survival was ca. 95 and 90% at 35 and 37°C, respectively. From these results for Z. noltii populations in the Ria Formosa we estimated sub-lethal temperature to be approximately 38°C for Z. noltii, close to the maximum of 36°C recorded in the summer 2007. Considering predicted trajectories in the coming decades, these results raise concern as to the future viability of intertidal Z. noltii populations near the southernmost edge of their distribution. Handling editor: S. M. Thomaz  相似文献   

17.
The recovery of oxygen uptake to the standard metabolic rate (SMR) following exhaustive chasing exercise in Atlantic salmon Salmo salar parr occurred in three phases (rapid, plateau and slow). The initial recovery phase lasted 0·7 h and contributed 16% to the total excess post‐exercise oxygen consumption (EPOC). It was followed by a longer plateau phase that contributed 53% to the total EPOC. The slow recovery phase that completed recovery of SMR, which has not been reported previously, made a 31% contribution to the total EPOC. The plasticity of EPOC was demonstrated in exercise‐trained fish. Exercise training increased EPOC by 39% when compared with control fish (mean ± S.E., 877·7 ± 73·1 v . 629·2 ± 53·4 mg O2 kg?1, d.f. = 9, P <  0·05), with the duration of the plateau phase increasing by 38% (4·7 ± 0·58 v . 3·4 ± 0·16 h, d.f. = 9, P <  0·05) and the contribution of the slow phase to the total EPOC increasing by 80% (173·9 ± 23·9 v . 312·5 ± 50·4 mg O2 kg?1, d.f. = 9, P  < 0·05). As a result, the combination of the plateau and slow phases of exercise‐trained fish increased by 47% compared with control fish (756·6 ± 71·4 v . 513·6 ± 43·1 mg O2 kg?1; d.f. = 9, P  = 0·01). To substantiate the hypothesis that the plateau and slow recovery phase of EPOC was related to general metabolic recovery following exhaustive exercise, the time‐course for recovery of SMR was compared with previously published metabolite recovery profiles. The final phase of metabolic recovery was temporally associated with the final phases of gluconeogenesis, lactate oxidation and muscle intracellular pH regulation. Therefore, the plasticity of the latter phase of EPOC agreed with the known effects of exercise training in fishes.  相似文献   

18.
Measurements of bimodal oxygen uptake have been made in a freshwater air-breathing fish,Notopterus chitala at 29.0±1(S.D.)°C. xhe mean oxygen uptake from continuously flowing water without any access to air, was found to be 3.58±0.37 (S.E.) ml O2 · h?1 and 56.84+4.29 (S.E.) ml O2 · kg?1 · h?1 for a fish weighing 66.92 + 11.27 (S.E.) g body weight. In still water with access to air, the mean oxygen uptake through the gills were recorded to be 2.49 ± 0.31 (S.E.) ml O2 · h?1 and 38.78 ± 1.92 (S.E.) ml O2 · kg?1 · h?1 and through the accessory respiratory organs (swim-bladder) 6.04±0.87 (S.E.) ml O2 · h?1 and 92.32±2.91 (S.E.) ml O2 · kg?1 · h?1 for a fish averaging 66.92±11.27 (S.E.) g. Out of the total oxygen uptake (131.10 ml O2 · kg?1 · h?1), about 70% was obtained through the aerial route and the remainder 30% through the gills.  相似文献   

19.
The aim of this study is to examine the effects of variations in salinity levels on growth and survival of two fast-growing Mediterranean seagrasses, Cymodocea nodosa and Zostera noltii. We also tested the capacity of C. nodosa to acclimate to a gradual increase in salinity and to discover how it responds to a sharp rise in salinity in combination with other factors, such as increases in temperature, seasonality and different plant-population origins. Several short-term (10 days) experiments were conducted under controlled conditions. For each experiment, ten marked shoots were placed in 5-l aquaria, where they were exposed to different salinity treatments (ranging from 2 to 72 psu). Growth and survival of both species were significantly affected by salinity. A significant effect between salinity and temperature on the shoot growth rate of C. nodosa was also detected, but not on shoot mortality. When C. nodosa plants were acclimated by gradually increasing the salinity level, it was observed that acclimatisation improved tolerance to salinity changes. A different response to salinity variations, depending on the origin of the plants or the season of the year, was also detected. These results indicated that Z. noltii plants tolerate conditions of hyposalinity better than C. nodosa, and that the tolerance range of C. nodosa may change depending on the temperature, the season or the population.  相似文献   

20.
Within the scope of a seagrass monitoring program in the Novigrad Sea, Central Croatian Adriatic, we predicted that the annual variability in coverage of seagrasses (Zostera marina, Zostera noltii, and Cymodocea nodosa) can be partially explained by the annual variability in sediment translocation. From 23 fixed DGPS-referenced monitoring video transects followed over three years (June 2007-2009), we calculated annual (i) changes in interior bed seagrass coverage, (ii) gain in seagrass at the lower edge of the bed and seagrass bed expansion, and (iii) accumulation of sediment, its depth dependence, and the associated changes in transect slope. We found that in 2007 to 2008, the year with net sediment accumulation, seagrass coverage increased and the bed expanded. In both years seagrass cover within the seagrass bed increased with increasing sediment accumulation, while seagrass bed expansion was highest under intermediate sedimentation rates. Boat-based videographic monitoring can document both natural sediment movement along the depth gradient, and species-specific responses necessary for informed management of submerged aquatic vegetation in the Adriatic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号