首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although both interspecific competition and coexistence mechanisms are central to ecological and evolutionary theory, past empirical studies have generally focused on simple (two-species) communities over short time periods. Experimental tests of these species interactions are challenging in complex study systems. Moreover, several studies of ‘imperfect generalists’, consistent with Liem's Paradox, raise questions about the ability of evolved species differences to partition niche space effectively when resources vary considerably across the annual cycle. Here we used a recently developed theoretical framework to combine past research on population-level processes with observational data on resource use to test for ongoing interspecific competition and understand the nature of resource overlap. We compared species diet overlaps and differences in several distinctive communities centred on a focal species, the American Redstart Setophaga ruticilla replicated both spatially and seasonally, in combination with documentation of population regulation to assess the ability of similar species to partition dietary niche space and limit interspecific competition. Our results document high dietary overlap in most of the communities studied, with only subtle differentiation consistent with known species differences in foraging behaviour and morphology. These findings are largely consistent with species foraging as imperfect generalists. However, in contrast to past studies, the high diet overlaps observed here during times of inferred resource scarcity were driven by low-value prey taxa (e.g. small ants) and did not involve truly ‘private’ resources. All of these factors increase the potential negative impacts of interspecific competition, and limit the ability of these birds to avoid competition if food availability deteriorates further than observed in our study, either seasonally or at longer intervals.  相似文献   

2.
An ecological niche has been defined as an n‐dimensional hypervolume formed by conditions and resources that species need to survive, grow, and reproduce. In practice, such niche dimensions are measurable and describe how species share resources, which has been thought to be a crucial mechanism for coexistence and a major driver of broad biodiversity patterns. Here, we investigate resource partitioning and trophic interactions of three sympatric, phylogenetically related and morphologically similar species of thrushes (Turdus spp.). Based on one year of data collected in southern Brazil, we investigated niche partitioning using three approaches: diet and trophic niche assessed by fecal analysis, diet and niche estimated by stable isotopes in blood and mixing models, and bipartite network analysis derived from direct diet and mixing model outputs. Approaches revealed that the three sympatric thrushes are generalists that feed on similar diets, demonstrating high niche overlap. Fruits from C3 plants were one of the most important food items in their networks, with wide links connecting the three thrush species. Turdus amaurochalinus and T. albicollis had the greatest trophic and isotopic niche overlap, with 90% and 20% overlap, respectively. There was partitioning of key resources between these two species, with a shared preference for fig tree fruits—Ficus cestrifolia (T. amaurochalinus PSIRI% = 11.3 and T. albicollis = 11.5), which was not present in the diet of T. rufiventris. Results added a new approach to the network analysis based on values from the stable isotope mixing models, allowing comparisons between traditional dietary analysis and diet inferred by isotopic mixing models, which reflects food items effectively assimilated in consumer tissues. Both are visualized in bipartite networks and show food‐consumers link strengths. This approach could be useful to other studies using stable isotopes coupled to network analysis, particularly useful in sympatric species with similar niches.  相似文献   

3.
Competing hypotheses explaining species’ use of resources have been advanced. Resource limitations in habitat and/or food are factors that affect assemblages of species. These limitations could drive the evolution of morphological and/or behavioural specialization, permitting the coexistence of closely related species through resource partitioning and niche differentiation. Alternatively, when resources are unlimited, fluctuations in resources availability will cause concomitant shifts in resource use regardless of species identity. Here, we used next‐generation sequencing to test these hypotheses and characterize the diversity, overlap and seasonal variation in the diet of three species of insectivorous bats of the genus Pteronotus. We identified 465 prey (MOTUs) in the guano of 192 individuals. Lepidoptera and Diptera represented the most consumed insect orders. Diet of bats exhibited a moderate level of overlap, with the highest value between Pteronotus parnellii and Pteronotus personatus in the wet season. We found higher dietary overlap between species during the same seasons than within any single species across seasons. This suggests that diets of the three species are driven more by prey availability than by any particular predator‐specific characteristic. P. davyi and P. personatus increased their dietary breadth during the dry season, whereas P. parnellii diet was broader and had the highest effective number of prey species in all seasons. This supports the existence of dietary flexibility in generalist bats and dietary niche overlapping among groups of closely related species in highly seasonal ecosystems. Moreover, the abundance and availability of insect prey may drive the diet of insectivores.  相似文献   

4.
Competition often occurs between sympatric species that exploit similar ecological niches. Among canids, competition may be reduced by partitioning resources such as food, time, and habitat, but the mechanisms of coexistence remain poorly understood, particularly among fox species. We described the food habits of two foxes that live sympatrically across northern and central Asia, the corsac fox (Vulpes corsac) and red fox (V. vulpes), by analyzing scats collected during a field study in Mongolia. We analyzed 829 corsac and 995 red fox scats collected from April 2005 to August 2007 and tested the extent to which food partitioning occurred. The diets of both species consisted mainly of insects followed by rodents, but also included birds, reptiles, large mammal remains (carrion), plant material (including fruits and seeds), and garbage. Despite high overlap in the proportion of food items consumed, differences existed between species in overall diet with corsacs more frequently consuming beetles, but proportionally fewer crickets and large mammal remains than red foxes. We detected interspecific differences during the pup rearing and dispersal seasons, when prey was abundant, but not during the breeding season, when prey was scarce and diet overlap highest. Each species’ diet also differed seasonally and exhibited moderate overall breadth. Corsacs consumed proportionally more beetles and rodents during pup rearing and crickets during dispersal relative to other seasons, whereas red foxes consumed proportionally more crickets during pup rearing and dispersal and more rodents and large mammals during pup rearing and breeding relative to other seasons. Our results suggest that partitioning of food resources during most of the year facilitates coexistence, and that the potential for competition is highest during winter months.  相似文献   

5.
Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify. We investigated potential pathways by which foraging behavior may facilitate resource partitioning in two of the largest co‐occurring and closely related species on Earth, blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales. We integrated multiple long‐term datasets (line‐transect surveys, whale‐watching records, net sampling, stable isotope analysis, and remote‐sensing of oceanographic parameters) to compare the diet, phenology, and distribution of the two species during their foraging periods in the highly productive waters of Monterey Bay, California, USA within the California Current Ecosystem. Our long‐term study reveals that blue and humpback whales likely facilitate sympatry by partitioning their foraging along three axes: trophic, temporal, and spatial. Blue whales were specialists foraging on krill, predictably targeting a seasonal peak in krill abundance, were present in the bay for an average of 4.7 months, and were spatially restricted at the continental shelf break. In contrast, humpback whales were generalists apparently feeding on a mixed diet of krill and fishes depending on relative abundances, were present in the bay for a more extended period (average of 6.6 months), and had a broader spatial distribution at the shelf break and inshore. Ultimately, competition for common resources can lead to behavioral, morphological, and physiological character displacement between sympatric species. Understanding the mechanisms for species coexistence is both fundamental to maintaining biodiverse ecosystems, and provides insight into the evolutionary drivers of morphological differences in closely related species.  相似文献   

6.
Interspecific competition is a dominant force in animal communities that induces niche shifts in ecological and evolutionary time. If competition occurs, niche expansion can be expected when the competitor disappears because resources previously inaccessible due to competitive constraints can then be exploited (i.e., ecological release). Here, we aimed to determine the potential effects of interspecific competition between the little bustard (Tetrax tetrax) and the great bustard (Otis tarda) using a multidimensional niche approach with habitat distribution data. We explored whether the degree of niche overlap between the species was a density‐dependent function of interspecific competition. We then looked for evidences of ecological release by comparing measures of niche breadth and position of the little bustard between allopatric and sympatric situations. Furthermore, we evaluated whether niche shifts could depend not only on the presence of great bustard but also on the density of little and great bustards. The habitat niches of these bustard species partially overlapped when co‐occurring, but we found no relationship between degree of overlap and great bustard density. In the presence of the competitor, little bustard's niche was displaced toward increased use of the species' primary habitat. Little bustard's niche breadth decreased proportionally with great bustard density in sympatric sites, in consistence with theory. Overall, our results suggest that density‐dependent variation in little bustard's niche is the outcome of interspecific competition with the great bustard. The use of computational tools like kernel density estimators to obtain multidimensional niches should bring novel insights on how species' ecological niches behave under the effects of interspecific competition in ecological communities.  相似文献   

7.
8.
Niche theory predicts that sympatric species should differ in some ecological characteristic, to allow co-existence and reduce competition for key resources. Food is critical on wintering grounds and stopover areas for migratory species that need to accumulate reserves in order to complete their migration. Wetlands of the Rio Grande do Sul coastal plain, in southern Brazil, host several species of shorebirds with similar morphology, foraging methods and diet. When these species are in sympatry, some trophic niche overlap is expected. Diets and trophic niches of migratory and resident shorebirds were investigated during the austral summer on Torotama Island, Lagoa dos Patos Estuary, Brazil. Complementary methods were used to determine the trophic ecology of three shorebird species; diet was determined through analysis of feces and food samples, using stable isotopes of carbon and nitrogen. The local invertebrate community was sampled to determine potential prey and ascertain feeding preferences of birds. Coleoptera was the most abundant taxon in the feces of all shorebirds. Trophic niche overlap in the diets was high, with the widest trophic niche found for the buff-breasted sandpiper Calidris subruficollis. Isotopic mixing models indicated differences in the main food sources of shorebirds. The isotopic niche breadth was widest for the American golden-plover Pluvialis dominica. These species, as well as the resident southern lapwing Vanellus chilensis, consumed some prey in higher proportions over others, although they had generalist diets. Migratory species with generalist habits benefit from heterogeneous environments such as floodplains during the non-breeding season.  相似文献   

9.
Many raptor species are considered to be generalists, taking a range of prey species. However, longitudinal dietary records are often scarce, although necessary for characterizing niche width of species at population and individual levels. Quantifying raptor diets at large spatio‐temporal scales is often necessary for refining conservation efforts, although it can be particularly difficult and may involve a great effort by conventional means. Therefore, we adopted the analysis of stable isotopes in tissues of predators and their potential food sources as a complementary methodology for assessing animals' diet. We examined the isotopic composition (δ13C and δ15N) of White‐tailed Eagles Haliaeetus albicilla from Germany, Finland and Greenland to detect patterns of dietary variation and quantify diet composition. The isotopic analysis included liver and muscle samples from Eagles of the three populations together with 16 potential food sources in the German population. Our results suggested dietary differences between German and Greenlandic Eagles, in accordance with the availability of freshwater and marine habitats in each population. Within the German population, we found seasonal shifts in isotopic ratios, suggesting the birds responded to temporal changes in food availabilities, and age‐related isotopic differences, indicating different diets in adults and juveniles. Isotopic values of liver and muscle tissues collected from the same animal showed intra‐individual short‐term changes in the German and Finnish but not Greenlandic population. This suggests that local feeding niches of this generalist predator may vary with local food supplies, which determines the niche width (from generalist to specialist) at the individual level. Our results also revealed that game mammal carcasses constitute an important food source (29.5% of diet) for the German Eagle population during the winter half‐year corresponding to the hunting season. This result is of relevance to management and conservation because the White‐tailed Eagle and other raptor species are affected by the ingestion of lead ammunition from shot mammalian carcasses.  相似文献   

10.
Theories involving niche diversification to explain high levels of tropical diversity propose that species are more likely to co‐occur if they partition at least one dimension of their ecological niche space. Yet, numerous species appear to have widely overlapping niches based upon broad categorizations of resource use or functional traits. In particular, the extent to which food partitioning contributes to species coexistence in hyperdiverse tropical ecosystems remains unresolved. Here, we use a molecular approach to investigate inter‐ and intraspecific dietary partitioning between two species of damselfish (Dascyllus flavicaudus, Chromis viridis) that commonly co‐occur in branching corals. Species‐level identification of their diverse zooplankton prey revealed significant differences in diet composition between species despite their seemingly similar feeding strategies. Dascyllus exhibited a more diverse diet than Chromis, whereas Chromis tended to select larger prey items. A large calanoid copepod, Labidocera sp., found in low density and higher in the water column during the day, explained more than 19% of the variation in dietary composition between Dascyllus and Chromis. Dascyllus did not significantly shift its diet in the presence of Chromis, which suggests intrinsic differences in feeding behaviour. Finally, prey composition significantly shifted during the ontogeny of both fish species. Our findings show that levels of dietary specialization among coral reef associated species have likely been underestimated, and they underscore the importance of characterizing trophic webs in tropical ecosystems at higher levels of taxonomic resolution. They also suggest that niche redundancy may not be as common as previously thought.  相似文献   

11.
Understanding coexistence between sympatric felines with similar body sizes, such as jaguars Panthera onca and pumas Puma concolor , requires knowledge of the way these predators consume and partition food resources. Yet the importance of livestock predation on jaguar and puma coexistence is poorly known. I investigated food habits and patterns of livestock depredation of jaguar and pumas in the Iguaçu National Park (INP) in southern Brazil. From 1997 to 2001, I collected scats opportunistically on trails and roads in INP and visited ranches on the border of INP. I found that jaguars relied mostly on large and medium-sized wild prey species, while pumas concentrated on medium-sized prey species. Livestock was the fifth most frequent prey found in jaguar scats but the most important one in terms of biomass consumed. Jaguar and puma diets differed significantly when all prey items were compared and also when livestock was excluded from the jaguar diet. Jaguar predation on livestock was considerably higher than predation by pumas. However, predation was not substantial relative to availability of livestock, and cattle likely constitute an alternative source of prey for jaguars. Degree of diet overlap between jaguar and puma in INP suggests that coexistence was likely driven by exploitative competition through some degree of food partitioning. My results highlight the importance of more actions toward increasing numbers of large ungulates to preserve the population of jaguars in INP.  相似文献   

12.
The diets of sympatric species of opossums coexisting in small (<10 ha) Atlantic Forest fragments were studied at Poço das Antas Biological Reserve, southeastern Brazil. Food items consumed by Caluromys philander and Didelphis aurita were investigated through the analysis of faecal contents, and compared with the diet of Micoureus demerarae analysed in a previous study. The major diet components for all three species were arthropods and fruits, with a high richness of items of both feeding categories; feathers were also found in the diet of D. aurita. The most frequent insect orders overall were Hymenoptera and Coleoptera, and most seeds were from plants of secondary vegetation such as Cecropia and Piper. The diets showed little variation along time and space for all three species. Diets were also similar among species, except for a larger consumption of Arachnida and Diplopoda and a smaller consumption of Lepidoptera by D. aurita when compared to M. demerarae. Diversity of food items was lower for C. philander when compared with either other species. There was a high feeding niche overlap between species, suggesting that differentiation in diet composition would not be enough to allow coexistence of the three species in small fragments. Coexistence may rather be allowed by vertical segregation and/or by differences in prey size.  相似文献   

13.
Penguins are a monophyletic group in which many species are found breeding sympatrically, raising questions regarding how these species coexist successfully. Here, the isotopic niche of three sympatric pygoscelid penguin species was investigated at Powell Island, South Orkney Islands, during two breeding seasons (austral summers 2013–2014 and 2015–2016). Measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios were obtained from blood (adults) or feather (chicks) samples collected from Adélie Pygoscelis adeliae, chinstrap P. antarctica, and gentoo P. papua penguins. Isotopic niche regions (a proxy for the realized trophic niches) were computed to provide estimates of the trophic niche width of the studied species during the breeding season. The isotopic niche regions of adults of all three species were similar, but gentoo chicks had noticeably wider isotopic niches than the chicks of the other two species. Moderate to strong overlap in isotopic niche among species was found during each breeding season and for both age groups, suggesting that the potential for competition for shared food sources was similar during the two study years, although the actual level of competition could not be determined owing to the lack of data on resource abundance. Clear interannual shifts in isotopic niche were seen in all three species, though of lower amplitude for adult chinstrap penguins. These shifts were due to variation in carbon, but not nitrogen, isotopic ratios, which could indicate either a change in isotopic signature of their prey or a switch to an alternative food web. The main conclusions of this study are that (1) there is a partial overlap in the isotopic niches of these three congeneric species and that (2) they responded similarly to changes that likely occurred at the base of their food chain between the 2 years of the study.  相似文献   

14.
Neotropical bat communities are among the most diverse mammal communities in the world, and a better understanding of these assemblages may permit inferences about how so many species coexist. While broad trophic guilds (e.g., frugivore, insectivore) of bats are recognized, details of diet and similarities among species remain largely unknown. We used stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) to characterize the community structure of a diverse Neotropical bat fauna from Belize to test predictions of niche theory and the competitive exclusion principle. We predicted that (1) interspecific variation in isotopic overlap would be greater within guilds than between guilds, and (2) no two sympatric populations would have isotopic niches that overlap completely, unless there is variation along some other axis (e.g., temporal, spatial). We additionally tested body size as an explanatory metric of potential overlap and predicted that larger‐bodied animals would have greater niche breadths. Results suggest that while guild‐level characterizations of communities are at least somewhat informative, there are multiple examples of intra‐ and inter‐guild species pairs with significantly overlapping isotopic niches, suggesting that, counter to predictions, they may compete for resources. Understanding the trophic structure of animal communities is fundamental to conservation and management of endangered species and ecosystems and important for evolutionary studies, and stable isotope analyses can provide key insights as well as informing hypotheses of the diet of species that are not well known. Abstract in Spanish is available with online material.  相似文献   

15.
Consumers acquire essential nutrients by ingesting the tissues of resource species. When these tissues contain essential nutrients in a suboptimal ratio, consumers may benefit from ingesting a mixture of nutritionally complementary resource species. We investigate the joint ecological and evolutionary consequences of competition for complementary resources, using an adaptive dynamics model of two consumers and two resources that differ in their relative content of two essential nutrients. In the absence of competition, a nutritionally balanced diet rarely maximizes fitness because of the dynamic feedbacks between uptake rate and resource density, whereas in sympatry, nutritionally balanced diets maximize fitness because competing consumers with different nutritional requirements tend to equalize the relative abundances of the two resources. Adaptation from allopatric to sympatric fitness optima can generate character convergence, divergence, and parallel shifts, depending not on the degree of diet overlap but on the match between resource nutrient content and consumer nutrient requirements. Contrary to previous verbal arguments that suggest that character convergence leads to neutral stability, coadaptation of competing consumers always leads to stable coexistence. Furthermore, we show that incorporating costs of consuming or excreting excess nonlimiting nutrients selects for nutritionally balanced diets and so promotes character convergence. This article demonstrates that resource-use overlap has little bearing on coexistence when resources are nutritionally complementary, and it highlights the importance of using mathematical models to infer the stability of ecoevolutionary dynamics.  相似文献   

16.
Abstract.  1. Molecular techniques have greatly added to the number of known sympatric cryptic species in insects. Ecological differences between these newly distinguished species are little explored, but niches often appear to overlap strongly. These cases are good models for exploring new ideas about species coexistence and community structure.
2.  Acanthoscelides obtectus and A. obvelatus are two sister species of bean bruchids, which have been confused until the last decade. One important ecological difference between them has emerged, however: A. obtectus is multivoltine and now distributed worldwide, whereas A. obvelatus is univoltine and restricted to Mesoamerica. Where their ranges overlap, the two species share the same host plants and larvae can sometimes complete development in the same seed.
3. The analysis of 27 622 Mexican individuals of the two species in 2001-2002 and 2002-2003 indicates that their niches overlap, but are differentiated with respect to altitude and the kind of beans (wild vs. domesticated). The principal patterns in their relative abundance in different habitats, and at different seasons, were constant from one year to the next.
4. As sympatry of these species seems to be of recent origin, the observed niche differentiation may not have evolved in response to competition, but could instead be the consequence of physiological differences, evolved independently in each species in allopatry, that pre-adapted them for different altitudes and kinds of resources.
5. The combination of biological and historical factors thus appears to allow these two sibling species to coexist in sympatry, despite their broadly overlapping ecological niches.  相似文献   

17.
Kangaroos and kin (superfamily Macropodoidea) are the principal endemic herbivores of Australia and the most diverse radiation of marsupial herbivores ever to have evolved. As is typical of other herbivore groups (e.g. bovids), dietary niches span fruit, fungi, dicot leaves and monocot grasses in both specialists and generalists, but to date dietary classification has been largely ad hoc and poorly tied to actual dietary ecological data. Here we provide a simple dietary classification of the Macropodoidea based on an extensive literature survey. Intake of four major dietary items – grasses, dicot leaves, fruits and seeds, and fungi – was assessed using proportional intake for 19 species and categorical (ranked intake) data for 37 species. Statistical comparisons with cluster and principal components analyses aligned species into four dietary groups. Members of the first group have diets that primarily consist of fungi and fruits. Relative proportions of grasses to dicot leaves separate the remaining species into browser (more than 70% dicots), grazer (more than 70% grasses) and mixed feeder groups. Comparison of our diet‐based classification with a prevailing scheme based on dental morphology suggests that most species with what has traditionally been viewed as a ‘browser‐grade dentition’ are actually mixed feeders. This suggests that either morphology and diet are not tightly linked or that morphological differences between the dentitions of browsers and mixed feeders are subtle and have been overlooked. A positive correlation was found between body mass and average proportional intake of grass in the diet of macropodoids. This parallels the situation found in bovids, as well as the percentage cut‐off between dietary groups. These trends suggest that some underlying ecophysiological constraints may influence food choice in mammalian herbivores providing useful pointers to the diets of extinct taxa.  相似文献   

18.
Understanding the trophic relationships among closely related species is a way to obtain subsidies for their management and conservation of their habitats. The diets of three co-occurring abundant fish species of the Gerreidae family (Diapterus rhombeus, Eucinostomus argenteus and Eucinostomus gula) in a tropical bay were described. The tested hypothesis was that the three sympatric species present shifts in their use of resource during the ontogenetic development to facilitate their coexistence. Size groups for each species were categorized according to breakpoints in the morphological structures determined by piecewise regression models. Significant overlapping in diets was found for all size classes of D. rhombeus but not for size classes of the Eucinostomus genus. Furthermore, different size classes of D. rhombeus did not overlap diet with size classes of the Eucinostomus genus. The specialization in feeding niches corresponding to growth seems to bring benefits for this group of fish rather than a generalist feeding strategy. The hypothesis of the available resources partitioning was accepted only between the two genera (Diapterus and Eucinostomus), and among size classes of the Eucinostomus genus that seemed to follow the principle of limiting similarity. However, different size classes of D. rhombeus exhibited strong evidence of an intraspecific overlapping of the trophic niche. It seems that different processes related to use of the trophic niche dimension are structuring these closely related fish species.  相似文献   

19.
Summary We consider the dietary relationships of the numerically dominant breeding bird species in four North American grassland/shrubsteppe habitats, sampled over 2–3 consecutive years. Overall, the diets of these species contained primarily insects: orthopterans comprised 29% of the diet biomass, coleopterans 24%, and lepidopteran larvae 23%, while seeds contributed 15% of the average diet. These diets varied substantially, however, and we evaluated several aspects of this variation. Intersexual differences in diets within a species were few, despite the occurrence of significant sexual size dimorphism in several species. For many species, however, there were substantial shifts in dietary composition between years at a given location; overall, the average between-year similarity of species' dietary composition was 70%. Different species exhibited rather different diet patterns. Horned Larks were relatively omnivorous, had broad diet composition niches, and varied considerably in diets between different locations. Meadowlarks were also broad-niched and geographically variable in their diets, but were the most highly carnivorous of the species we considered. Dietary niche breadths of Grasshopper Sparrows were intermediate, but diet composition was rather stable, both between years and between locations. Chestnut-collared Longspurs exhibited narrow diet niches, but substantial annual variation: each year this species apparently exploited a different but limited set of prey types rather heavily. Larger avian predators generally consumed a broader array of functional groups of prey, but did not differ in the taxonomic variety of their diets from small birds. Variation in diet composition between individuals within local populations was considerable; in most species, an individual contained on the average 30–40% of the prey taxa represented in entire population smaples.Patterns of dietary overlap among species were quite inconsistent from year to year at most locations, although at the shrubsteppe site overlap among all species present was consistently quite high. Relatively few cooccurring species pairs exhibited low diet overlap. The degree of diet niche overlap was unrelated to body size differences of the birds, despite as much as six-fold differences in weight among some coexisting species. Relationships of the bird species on another dimension of the trophic niche, prey size, also differed substantially between sites and years. The ranking of co-occurring species by the mean sizes of the prey they consumed generally did not parallel their rankings by body sizes, and in some cases the smallest and the largest species present ate prey of similar sizes. At the shrubsteppe site, all the breeding species exhibited quite similar frequency distributions of prey sizes in their diets.As species number and diversity increased in the breeding avifaunas, diet niche breadths generally decreased, species packing by prey size decreased, and diet composition niche overlap remained relatively unchanged. These trends are in at least partial agreement with predictions of diffuse competition theory, but the patterns were derived from broad inter-site comparisons of overall site averages, and the relationships generally did not hold within local assemblages of species. In general, our attempts to match values of dietary niche features with site characteristics failed to demonstrate close agreement with the predictions of prevailing ecological theory based upon assumptions of resource limitation and competition. Instead, our findings seem generally most consistent with the suggestion that food is not normally limiting to bird populations in these systems, and individuals and populations are exploiting the food resources in an opportunistic fashion, which leads to considerable individual, between-year, and between-location variation in diet compositions and interspecific overlaps.Our attempts to discern clear relationships that accord with theoretical expectations in these avian assemblages are thwarted by our lack of detailed information on the resource base and by the lack of clear tests that will separate alternative hypotheses of community organization and structuring. We suggest that these complications may compromise the findings of many community studies.  相似文献   

20.
The diets of two sympatric, morphologically similar species of Moenkhausia were studied to investigate whether the manner in which they exploit food resources can help to explain their coexistence. Fish diets were evaluated during the low‐water season in six lakes of the upper Paraná River floodplain (Brazil). The results indicate that these two species segregate in relation to food resources and that the differential use of resources is probably a strategy that reduces competition during periods of a potential food shortage (the low‐water season).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号