首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northern fulmar (Fulmarus glacialis) is an abundant seabird whose Northeast Atlantic population has expanded dramatically over the past 100 years. Archaeological evidence suggests that Iceland and St Kilda were the ancestral populations from which essentially all other colonies in the region were derived. We collected samples from seven breeding colonies around the North Atlantic and used mitochondrial DNA analysis to ask whether population structure was present and, if so, where there was evidence about which colony was the dominant source population. Our data reveal a pattern consistent with isolation by distance, suggesting that, even though capable of flying great distances, most birds return to breed either at their own or neighbouring colonies. Interestingly, although most colonizers appear to have come originally from Iceland, our analysis also identifies St Kilda as a possible source. However, this secondary pattern appears to be largely an artefact, and can be attributed to the low haplotype diversity on St Kilda which yields a much clearer isolation by distance signal than that generated by birds dispersing from Iceland, where haplotype diversity is extremely high. Consequently, we urge caution when interpreting patterns in which populations vary greatly in the genetic diversity they harbour.  相似文献   

2.
Aim The objective was to find direct genetic evidence supporting introgressive hybridization between tetraploid tree birch (Betula pubescens) and diploid dwarf birch (B. nana), via triploid hybrids, and to investigate an association between the introgression and phylogeographical distribution of Icelandic birch. Location Samples were collected from 463 trees in 12 woodlands in Iceland and eight locations in Norway, Sweden, Scotland and Greenland. Methods Ploidy status of individual trees was determined by chromosome counting. Variation in the chloroplast genome was assessed using polymerase chain reaction‐restriction fragment length polymorphism. The geographical distribution of the haplotypes was mapped. The haplotype variation and introgression ratios (IG) were analysed statistically. Results Thirteen haplotypes were identified among Icelandic samples. The most common haplotype (T, 49% occurrence) was present in all ploidy groups and in all woodlands. All common haplotypes were shared between the triploid group and the parental species, indicating introgressive hybridization. This was supported by the statistical analysis of IG indices and the variation components. Considerable differences existed among samples, shaped by isolation by distance and local introgression. An east–west phylogeographical distribution in Iceland was observed. Main conclusions Despite extensive introgression across species and ploidy levels, a biogeographical pattern has been observed, and this may indicate different population histories or multiple origins of Icelandic birch. The chloroplast haplotype diversity found in Iceland resembles that found in birch populations from northern Scandinavia.  相似文献   

3.
《Mammalian Biology》2007,72(4):193-203
Genetic diversity and population structure of two species of South American pinnipeds, Otaria flavescens and Arctocephalus australis, from colonies located along the south-eastern coast of South America, were analysed using mitochondrial DNA haplotypes and compared with two populations of these species from the Pacific coast. A 445 base-pair segment, that included the tRNA-Glu gene (31 bp) and the adjacent cytochrome b gene (414 bp), was amplified using the polymerase chain reaction and sequenced directly. O. flavescens and A. australis showed six and seven haplotypes with 12 and 20 polymorphic sites, respectively. In the Atlantic Ocean there was an individual of A. australis that showed an haplotype that was highly divergent from the others. If this haplotype is excluded, the pattern of haplotype differentiation obtained for both species indicated a possible bottleneck that would have occurred 110,000 years ago, which also affected other pinnipeds. Colonies of the Atlantic and the Pacific did not share haplotypes. This result, based on a limited number of samples for the comparisons between oceans, suggests that populations from both oceans correspond to different evolutionarily significant units. O. flavescens on the Atlantic coast shows two clusters of breeding colonies in Uruguay and Patagonia, separated by a thousand kilometres. Colonies within clusters did not show significant differences in haplotype frequencies, but the difference between the clusters was significant, suggesting that they correspond to different conservation stocks.  相似文献   

4.
The beachflea [Orchestia gammarellus (Pallas)] is a trans‐Atlantic amphipod inhabiting the littoral fringe. In Iceland, its distribution is temperature‐limited; it has recently colonized Iceland's relatively warm south‐western coast, and in the cooler north‐west, several small populations inhabit isolated warm springs. We address two questions: (i) Do the warm spring populations show evidence of long‐term residence in Iceland, or of recent colonization? (ii) For the new south‐western Icelandic populations, can the source population be determined? We sequenced COI for 22 populations in Iceland, Nova Scotia, the Faroe Islands, the British Isles, Norway and Sweden. Morphometric analysis of a subset of populations assessed 16 continuous and five discrete characters. Genetically, we found a star phylogeny: a common haplotype was found at all sites except two neighbouring warm spring populations, and all haplotypes were within two base pairs of this common haplotype. Morphometrically, almost all populations examined differed significantly in some characters; however, the warm spring populations differed slightly more from each other than did other populations. Although the origins of the Icelandic populations could not be well resolved, our data are consistent with a recent European origin.  相似文献   

5.
Movement, site fidelity and connectivity have important consequences for the evolution of population structure and therefore the conservation and management of a species. In this study photographs of naturally marked killer whales collected from sites across the Northeast Atlantic are used to estimate fidelity to sampling locations and movement between locations, expressed as transition probabilities, pt, using maximum likelihood methods. High transition probabilities suggest there is high inter-annual site fidelity to all locations, and large-scale movement between the spawning and wintering grounds of both Norwegian and Iceland stocks of Atlantic herring. There was no evidence of movement between the Norwegian herring grounds and Icelandic herring grounds, or between the mackerel fishing grounds and the herring fishing grounds. Thus the movement of predictable and abundant prey resources can lead to intrinsic isolation in this species We also find movement between the Northern Isles, Scotland and East Iceland. An association network indicates that killer whales predating seals around the Northern Isles, Scotland are linked to the community of killer whales that follow the Icelandic summer-spawning herring. This adds support to existing evidence of a broad niche width in some populations.  相似文献   

6.
The Purple Sandpiper (Calidris maritima) is a medium‐sized shorebird that breeds in the Arctic and winters along northern Atlantic coastlines. Migration routes and affiliations between breeding grounds and wintering grounds are incompletely understood. Some populations appear to be declining, and future management policies for this species will benefit from understanding their migration patterns. This study used two mitochondrial DNA markers and 10 microsatellite loci to analyze current population structure and historical demographic trends. Samples were obtained from breeding locations in Nunavut (Canada), Iceland, and Svalbard (Norway) and from wintering locations along the coast of Maine (USA), Nova Scotia, New Brunswick, and Newfoundland (Canada), and Scotland (UK). Mitochondrial haplotypes displayed low genetic diversity, and a shallow phylogeny indicating recent divergence. With the exception of the two Canadian breeding populations from Nunavut, there was significant genetic differentiation among samples from all breeding locations; however, none of the breeding populations was a monophyletic group. We also found differentiation between both Iceland and Svalbard breeding populations and North American wintering populations. This pattern of divergence is consistent with a previously proposed migratory pathway between Canadian breeding locations and wintering grounds in the United Kingdom, but argues against migration between breeding grounds in Iceland and Svalbard and wintering grounds in North America. Breeding birds from Svalbard also showed a genetic signature intermediate between Canadian breeders and Icelandic breeders. Our results extend current knowledge of Purple Sandpiper population genetic structure and present new information regarding migration routes to wintering grounds in North America.  相似文献   

7.
The last glacial maximum (20,000-18,000 years ago) dramatically affected extant distributions of virtually all northern European biota. Locations of refugia and postglacial recolonization pathways were examined in Fucus serratus (Heterokontophyta; Fucaceae) using a highly variable intergenic spacer developed from the complete mitochondrial genome of Fucus vesiculosus. Over 1,500 samples from the entire range of F. serratus were analysed using fluorescent single strand conformation polymorphism. A total of 28 mtDNA haplotypes was identified and sequenced. Three refugia were recognized based on high haplotype diversities and the presence of endemic haplotypes: southwest Ireland, the northern Brittany-Hurd Deep area of the English Channel, and the northwest Iberian Peninsula. The Irish refugium was the source for a recolonization sweep involving a single haplotype via northern Scotland and throughout Scandinavia, whereas recolonization from the Brittany-Hurd Deep refugium was more limited, probably because of unsuitable soft-bottom habitat in the Bay of Biscay and along the Belgian and Dutch coasts. The Iberian populations reflect a remnant refugium at the present-day southern boundary of the species range. A generalized skyline plot suggested exponential population expansion beginning in the mid-Pleistocene with maximal growth during the Eems interglacial 128,000-67,000 years ago, implying that the last glacial maximum mainly shaped population distributions rather than demography.  相似文献   

8.
We analysed the genetic structure of seven nesting sites of the endangered green turtle (Chelonia mydas) in Africa using mitochondrial DNA control region sequences. Tissue samples were collected from 188 nesting females at six sites in West Africa and one in the Indian Ocean. A 488 bp fragment of the control region revealed 14 different haplotypes, 10 of which are previously undescribed. The most common haplotype (CM8) was observed in 157 individuals. All other haplotypes were closely related, except two divergent lineages: CM38, removed by four substitutions, and the three Indian Ocean haplotypes, distinguished by 31 substitutions. Significant differences in haplotype and nucleotide diversity were observed between Atlantic rookeries and among ocean basins. Analysis of molecular variance revealed high levels of differentiation between the Atlantic and the Indian Ocean populations but a much shallower Atlantic substructuring. Green turtle population genetic structure is thought to have been shaped by a dynamic succession of extinction and recolonisation of rookeries, by natal homing and occasional breakdown in nest-site fidelity. Mismatch distributions of pairwise differences between haplotypes at each rookery were found to be consistent with recent population expansion. We argue that demographic histories can be explained by scenarios at several temporal scales, including geological events, sea level fluctuations and more recent patterns of exploitation. We discuss management and conservation implications of our results for these threatened populations, identifying two ESUs (one in the Atlantic and one in the Indian ocean) and three MUs within the Atlantic.  相似文献   

9.
Previous studies have suggested that the presence of sea ice is an important factor in facilitating migration and determining the degree of genetic isolation among contemporary arctic fox populations. Because the extent of sea ice is dependent upon global temperatures, periods of significant cooling would have had a major impact on fox population connectivity and genetic variation. We tested this hypothesis by extracting and sequencing mitochondrial control region sequences from 17 arctic foxes excavated from two late-ninth-century to twelfth-century AD archaeological sites in northeast Iceland, both of which predate the Little Ice Age (approx. sixteenth to nineteenth century). Despite the fact that five haplotypes have been observed in modern Icelandic foxes, a single haplotype was shared among all of the ancient individuals. Results from simulations within an approximate Bayesian computation framework suggest that the rapid increase in Icelandic arctic fox haplotype diversity can only be explained by sea-ice-mediated fox immigration facilitated by the Little Ice Age.  相似文献   

10.
Epidermal skin samples from eastern North Atlantic killer whales, Orcinus orca, were analyzed for carbon and nitrogen stable isotope ratios. From those, comparisons within a data set of 17 samples collected from Tysfjord, Norway, in November suggested that diet is relatively specialized during this time period at this location. There were significant differences between a small set of samples from Iceland and those collected from Norway, which had all been assigned to the same population by a previous population genetics study. The results would be consistent with matrilines feeding on either the Norwegian or Icelandic stocks of Atlantic herring (Clupea harengus). There was no significant difference within Icelandic samples between those assigned to the population known to feed upon herring and those assigned to a population hypothesized to follow Atlantic mackerel (Scomber scombrus). The greatest differences were between the epidermal samples analyzed in this study and tooth and bone collagen samples from the North Sea that were analyzed previously, which also showed significantly more variation in isotopic ratios than found for skin samples. These differences could reflect differences in turnover rate, differences in diet‐tissue fractionation and discrimination due to the amino acid composition of the different tissues, and/or greater competition promoting dietary variation between groups in the North Sea.  相似文献   

11.
The marine bryozoan Celleporella hyalina is a species complex composed of many highly divergent and mostly allopatric genetic lineages that are reproductively isolated but share a remarkably similar morphology. One such lineage commonly encrusts macroalgae throughout the NE Atlantic coast. To explore the processes leading to geographical diversification, reproductive isolation and speciation in this taxon, we (i) investigated NE Atlantic C. hyalina mitochondrial DNA phylogeography, and (ii) used breeding trials between geographical isolates to ascertain reproductive isolation. We find that haplotype diversity is geographically variable and there is a strong population structure, with significant isolation by distance. NE Atlantic C. hyalina is structured into two main parapatric lineages that appear to have had independent Pleistocene histories. Range expansions have resulted in two contact zones in Spain and W Ireland. Lineage 1 is found from Ireland to Spain and has low haplotype diversity, with closely related haplotypes, suggesting a recent population expansion into the Irish Sea, S Ireland, S England and Spain. Lineage 2 is found from Iceland to Spain and has high haplotype diversity. Complete reproductive isolation was found between some geographical isolates representing both lineages, whereas it was incomplete or asymmetric between others, suggesting these latter phylogeographical groups probably represent incipient species. The phylogeographical distribution of NE Atlantic C. hyalina does not fall easily into a pattern of southern refugia, and we discuss likely differences between terrestrial and marine system responses to Pleistocene glacial cycles.  相似文献   

12.
Red algae of the Bostrychia radicans/B. moritziana complex are common in warm temperate areas of North America. Phylogenetic analysis of both plastid and mitochondrial DNA sequence data revealed seven distinct evolutionary lineages among worldwide samples. Although only two haplotypes (plastid and mitochondrial) were found in Pacific Mexico, four plastid and 11 mitochondrial haplotypes were found in a similar latitudinal spread along the Atlantic coast of the United States. On the U.S. Atlantic coast only one plastid haplotype was found in northern samples (Connecticut to North Carolina), whereas further south several plastid haplotypes were found. Phylogenetic analyses suggested that this single plastid haplotype found among northern samples could be the result of a northward range expansion possibly since the last glacial maximum. Crossing data of samples within the same evolutionary lineage showed that samples with the same plastid haplotypes were generally sexually compatible; samples with different plastid haplotypes were reproductively isolated. Samples from Pacific Mexico were partially reproductively compatible with some samples from the Atlantic USA (plastid haplotype C) and were more closely related to these samples than these U.S. samples were to other U.S. Atlantic samples. Compatible solute types mirrored the plastid haplotype, with plastid haplotype B having only sorbitol, whereas all other haplotypes also contained dulcitol. Samples from Atlantic USA, with different plastid haplotypes (e.g. B vs. C), but within the same evolutionary lineage, were reproductively isolated from each other. Data indicate that reproductive isolation occurs between and within supported evolutionary lineages and that the number of cryptic species is high.  相似文献   

13.
Abstract: Restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) were used to test for population subdivision in the bottlenose dolphin (Tursiops truncatus). Atlantic and Pacific dolphin mtDNA samples exhibited distinctly different haplotypes (approximately 2.4% sequence divergence), indicating a lack of gene exchange. Within the Atlantic Ocean, mtDNA samples from the Gulf of Mexico and the Atlantic Coast were also found to be distinct, with a sequence divergence of approximately 0.6%. The Atlantic Coast–Gulf of Mexico dichotomy is consistent with patterns of genetic variation from other marine and coastal organisms from this region, and supports the hypothesized role of bio-geographic events in promoting the divergence of these and other forms. Regional differentiation was identified along the Atlantic Coast, whereas low sequence divergences among haplotypes and consistent haplotype frequencies across populations suggested considerable gene exchange among Gulf of Mexico populations. A highly divergent haplotype found in two individuals from two localities in the Gulf of Mexico is best explained by dispersal from either a distinct offshore Gulf stock or an unsampled Atlantic Coast stock. Additional samples are required to test for the existence of a distinct offshore race and, if it exists, to identify its distribution and contribution to population structure.  相似文献   

14.
The north-central Patagonian coast is the sea lions most abundant area in Argentina. As occurs along the entire Atlantic coast, the distribution of breeding colonies at this smaller geographical scale is also patchy, showing at least three areas with breeding activity. We study the genetic structure and historical population dynamics of the species in five colonies in this area, analysing a 508 base-pair segment of the D-loop control region. Otaria flavescens showed 10 haplotypes with 12 polymorphic sites. The genealogical relationship between haplotypes revealed a shallow pattern of phylogeographic structure. The analysis of molecular variance showed significant differences between colonies, however, pairwise comparisons only indicate significant differences between a pair of colonies belonging to different breeding areas. The pattern of haplotype differentiation and the mismatch distribution analysis suggest a possible bottleneck that would have occurred 64,000 years ago, followed by a demographic expansion of the three southernmost colonies. Thus, the historical population dynamics of O. flavescens in north-central Patagonia appears to be closely related with the dynamics of the Late Pleistocene glaciations.  相似文献   

15.
The Kemp's ridley sea turtle (Lepidochelys kempi) is restricted to the warm temperate zone of the North Atlantic Ocean, whereas the olive ridley turtle (L. olivacea) is globally distributed in warm-temperate and tropical seas, including nesting colonies in the North Atlantic that nearly overlap the range of L. kempi. To explain this lopsided distribution, Pritchard (1969) proposed a scenario in which an ancestral taxon was divided into Atlantic and Pacific forms (L. kempi and L. olivacea, respectively) by the Central American land bridge. According to this model, the olive ridley subsequently occupied the Pacific and Indian Oceans and recently colonized the Atlantic Ocean via southern Africa. To assess this biogeographic model, a 470 bp sequence of the mtDNA control region was compared among 89 ridley turtles, including the sole L. kempi nesting population and 7 nesting locations across the range of L. olivacea. These data confirm a fundamental partition between L. olivacea and L. kempi (p=0.052-0.069), shallow separations within L. olivacea (p=0.002-0.031), and strong geographic partitioning of mtDNA lineages. The most divergent L. olivacea haplotype is observed in the Indo-West Pacific region, as are the central haplotypes in a parsimony network, implicating this region as the source of the most recent radiation of olive ridley lineages. The most common olive ridley haplotype in Atlantic samples is distinguished from an Indo-West Pacific haplotype by a single nucleotide substitution, and East Pacific samples are distingushed from the same haplotype by two nucleotide substitutions. These shallow separations are consistent with the recent invasion of the Atlantic postulated by Pritchard (1969), and indicate that the East Pacific nesting colonies were also recently colonized from the Indo-West Pacific region. Molecular clock estimates place these invasions within the last 300,000 years. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Currently, three stocks of sei whales (Balaenoptera borealis) are defined in the North Atlantic; the Nova Scotian, Iceland-Denmark Strait and Eastern North Atlantic stocks, which are mainly based upon historical catch and sighting data. We analyzed mitochondrial control region DNA (mtDNA) sequences and genotypes from 7 to 11 microsatellite loci in 87 samples from three sites in the North Atlantic; Iceland, the Gulf of Maine and the Azores, and compared against the North Pacific using 489 previously published samples. No statistically significant deviations from homogeneity were detected among the North Atlantic samples at mtDNA or microsatellite loci. The genealogy estimated from the mtDNA sequences revealed a clear division of the haplotypes into a North Atlantic and a North Pacific clade, with the exception of one haplotype detected in a single sample from the Azores, which was included in the North Pacific clade. Significant genetic divergence between the North Atlantic and North Pacific Oceans was detected (mtDNA ΦST?=?0.72, microsatellite Weir and Cockerham’s ? = 0.20; p?<?0.001). The coalescent-based estimate of the population divergence time between the North Atlantic and North Pacific populations from the sequence variation among the mtDNA sequences was at 163,000 years ago. However, the inference was limited by an absence of samples from the Southern Hemisphere and uncertainty regarding mutation rates and generation times. The estimates of inter-oceanic migration rates were low (Nm at 0.007 into the North Pacific and at 0.248 in the opposite direction). Although estimates of genetic divergence among the current North Atlantic stocks were low and consistent with the extensive range of movement observed in satellite tagged sei whales, the high uncertainty of the genetic divergence estimates precludes rejection of multiple stocks in the North Atlantic.  相似文献   

17.
A major task in human genetics is to understand the nature of the evolutionary processes that have shaped the gene pools of contemporary populations. Ancient DNA studies have great potential to shed light on the evolution of populations because they provide the opportunity to sample from the same population at different points in time. Here, we show that a sample of mitochondrial DNA (mtDNA) control region sequences from 68 early medieval Icelandic skeletal remains is more closely related to sequences from contemporary inhabitants of Scotland, Ireland, and Scandinavia than to those from the modern Icelandic population. Due to a faster rate of genetic drift in the Icelandic mtDNA pool during the last 1,100 years, the sequences carried by the first settlers were better preserved in their ancestral gene pools than among their descendants in Iceland. These results demonstrate the inferential power gained in ancient DNA studies through the application of population genetics analyses to relatively large samples.  相似文献   

18.
To test the hypothesis that nonphysical barriers to gene flow play a role in the divergence of low-latitude seabird populations, we applied phylogeographic methods to mitochondrial control region sequence variation in a global sample of masked boobies (Sula dactylatra). In accord with previous studies, we found that Indo-Pacific and Atlantic haplotypes form two divergent lineages, excluding one haplotype previously attributed to secondary contact between the Indian Ocean and the Caribbean Sea. Within the Indo-Pacific and the Atlantic, we found a relatively large number of haplotypes, many of which were unique to a single population. Although haplotypes from most populations were found in more than one higher-level clade, nested clade analysis revealed a significant association between clades and geography for the majority of higher-level clades, most often interpreted as a consequence of isolation by distance. We found low levels of gene flow within Indo-Pacific and Atlantic populations, and a significant correlation between gene flow and geographical distance among Indo-Pacific populations. We estimate that Indo-Pacific masked boobies experienced rapid population growth approximately 180,000 years ago and that the majority of Indo-Pacific and Atlantic populations diverged within the last approximately 115,000 years. These combined data suggest that the predominant pattern between Indo-Pacific and Atlantic populations is long-term isolation by physical barriers to gene flow. In contrast, populations within these regions appear to have diverged despite few obvious physical barriers to gene flow, perhaps as a consequence of limited natal dispersal combined with local adaptation and/or genetic drift.  相似文献   

19.
DNA sequences of the mitochondrial control region of 180 North Atlantic right whales ( Euhalaena glacialis ) and 16 South Atlantic right whales ( E. australis ) have been determined using a combination of direct DNA sequencing and single stranded conformation polymorphism (SSCP) analysis. Five haplotypes were found in E. glacialis , and 10 in E. australis , but none were shared, supporting the reproductive isolation and separate species status of the North and South Atlantic right whales. One haplotype in E, glacialis was found in only three males born before 1982 and this matriline will likely be lost soon. The nucleotide diversity estimates for the five North Atlantic right whale haplotypes was 0.6% and 2.0% for the 10 haplotypes found in the South Atlantic right whales. The average haplotypic diversity was 0.87 in E. glacialis and 0.96 in E. australis , which is consistent with other studies showing a lower level of genetic variation in the North Atlantic right whale. Phylogenetic analysis identified two major assemblages of haplotypes in E. australis from the samples collected from Peninsula Valdes, suggesting a mixing of two historically divergent populations. Using genetic distance measurements with a divergence rate of 0.5%–1.0%/myr, we estimate E. glacialis diverged from E. australis 3–12.5 mya.  相似文献   

20.
The brown anole, Anolis sagrei, is one of the most widespread and successful colonisers of the diverse Anolis genus, which comprises c. 400 species occurring naturally in Central and South America and the Caribbean. Based on extensive between and within population sampling from a previously published study (334 mitochondrial DNA sequences) and sampling for this study (37 mtDNA sequences), we reconstruct a phylogeny and produce a haplotype network to assign a recently introduced population in St Vincent, Lesser Antilles to its geographic origin. A single haplotype was present in the St Vincent population, which was identical to a haplotype from Tampa, FL. We show that genetic diversity within native range populations, combined with low frequencies of introduced haplotypes in native ranges, may impair attempts to identify source populations, even despite intensive sampling effort. The absence of mtDNA haplotype diversity suggests a significant genetic founder effect within the St Vincent population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号