首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate warming experiments generally test the ecological effects of constant treatments while neglecting the influence of more realistic patterns of environmental fluctuations. Thus, little is known regarding how the temporal interaction between multiple episodes of thermal stress influences biotic interactions. We measured the sensitivity of predation rate in an intertidal sea star to changing levels of temporal coincidence of underwater and aerial thermal stress events. In laboratory trials, we controlled for intensity, variance and temporal patterning of both underwater and aerial body temperature. Predation rate decreased as underwater and aerial thermal stress episodes became temporally non-coincident, despite a similar intensity and variance among treatments. Experiments under constant conditions were a poor predictor of more complex environmental scenarios because of these strong temporal interactions. Such temporal interactions may be widespread in various ecosystems, suggesting a strong need for empirical studies and models that link environmental complexity, physiology, behaviour and species interactions.  相似文献   

2.
We tested the hypothesis that temporally autocorrelated variation should increase the abundance of an inferior competitor sustained by immigration. Temporally autocorrelated variability can increase abundance of the inferior species through effects on demography, the strength of competition, and the mean and variance in the abundance of competing species. We allowed the competitive inferior to immigrate into habitats with constant, variable, or temporally autocorrelated temperature regimes. In the absence of immigration, competitive exclusion occurred, in both constant and variable environments. Immigration permitted persistence of the inferior species, and increased immigration rates led to increased abundance. Temporally autocorrelated variability enhanced this effect of immigration. This 'inflationary' effect suggests that the interplay of immigration and environmental variability can jointly influence the outcome of competitive interactions. Our results suggest that an increase in temporal autocorrelation of environmental variability will cause regional processes to increasingly influence local interactions.  相似文献   

3.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   

4.
Harsh conditions (e.g., mortality and stress) reduce population growth rates directly; secondarily, they may reduce the intensity of interactions between organisms. Near-exclusive focus on the secondary effect of these forms of harshness has led ecologists to believe that they reduce the importance of ecological interactions, such as competition, and favor coexistence of even ecologically very similar species. By examining both the costs and the benefits, we show that harshness alone does not lessen the importance of species interactions or limit their role in community structure. Species coexistence requires niche differences, and harshness does not in itself make coexistence more likely. Fluctuations in environmental conditions (e.g., disturbance, seasonal change, and weather variation) also have been regarded as decreasing species interactions and favoring coexistence, but we argue that coexistence can only be favored when fluctuations create spatial or temporal niche opportunities. We argue that important diversity-promoting roles for harsh and fluctuating conditions depend on deviations from the assumptions of additive effects and linear dependencies most commonly found in ecological models. Such considerations imply strong roles for species interactions in the diversity of a community.  相似文献   

5.
Diversity and dominance in planktonic rotifers   总被引:2,自引:0,他引:2  
Green  J. 《Hydrobiologia》1993,(1):345-352
The diversity of planktonic species in a body of water can be estimated in two ways: momentary diversity and long term diversity. The former represents the number capable of coexisting at any one time, and the latter includes a seasonal or other temporal component. The relationship between the two varies mainly with salinity. Dominance is generally inversely related to diversity. In considering the total possible range of dominance for a given number of species the mean values are surprisingly restricted. An abnormally high dominance for a number of species can be an indication of pollution or some other form of environmental stress.  相似文献   

6.
The stress gradient hypothesis (SGH) predicts that the importance or intensity of competition and facilitation will change inversely along abiotic stress gradients. It was originally postulated that increasing environmental stress can induce a monotonic increase in facilitation. However, more recent models predicted that the relationship between severity and interaction exhibits a hump‐shaped pattern, in which positive interactions prevail under moderate stress but decline at the extreme ends of stress gradients. In the present study, we conducted a field experiment along a temporal rainfall gradient for five consecutive years, in order to investigate interactions in a shrub‐herbaceous plant community at the southern edge of the Badain Jaran Desert, and, more specifically, investigated the effects of Calligonum mongolicum, a dominant shrub species, on both abiotic environmental variables and the performance of sub‐canopy plant species. We found that shrubs can improve sub‐canopy water regimes, soil properties, plant biomass, density, cover, and richness and, more importantly, that the positive effect of shrubs on sub‐canopy soil moisture during the summer diminishes as rainfall decreases, a pattern that partly explains the collapse of the positive interaction between shrubs and their understory plants. These results provide empirical evidence that the positive effect of shrubs on understory plant communities in extreme arid environments may decline and become neutral with increasing drought stress.  相似文献   

7.
Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient that equally affects the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal relationship between richness and biomass, which is not as general as previously thought. We ignored these assumptions to assess changes in plant–plant interactions and their effect on local species richness across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we found that nurse plants (trees, shrubs and tussock grasses) increased local richness not only by expanding the niche of neighbouring species but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum varied depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant–plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. The results can also be used to refine predictions about the response of plant communities to environmental change, and to clarify the relative importance of biotic interactions as drivers of such responses.  相似文献   

8.
Darwin's naturalization conundrum describes the paradigm that community assembly is regulated by two opposing processes, environmental filtering and competitive interactions, which predict both similarity and distinctiveness of species to be important for establishment. Our goal is to use long‐term, large‐scale, and high‐resolution temporal data to examine diversity patterns over time and assess whether environmental filtering or competition plays a larger role in regulating community assembly processes. We evaluated Darwin's naturalization conundrum and how functional diversity has changed in the Laurentian Great Lakes fish community from 1870 to 2010, which has experienced frequent introductions of non‐native species and extirpations of native species. We analyzed how functional diversity has changed over time by decade from 1870 to 2010 at three spatial scales (regional, lake, and habitat) to account for potential noninteractions between species at the regional and lake level. We also determined which process, environmental filtering or competitive interactions, is more important in regulating community assembly and maintenance by comparing observed patterns to what we would expect in the absence of an ecological mechanism. With the exception of one community, all analyses show that functional diversity and species richness has increased over time and that environmental filtering regulates community assembly at the regional level. When examining functional diversity at the lake and habitat level, the regulating processes become more context dependent. This study is the first to examine diversity patterns and Darwin's conundrum by integrating long‐term, large‐scale, and high‐resolution temporal data at multiple spatial scales. Our results confirm that Darwin's conundrum is highly context dependent.  相似文献   

9.
Macrophysiology for a changing world   总被引:4,自引:0,他引:4  
The Millennium Ecosystem Assessment (MA) has identified climate change, habitat destruction, invasive species, overexploitation and pollution as the major drivers of biodiversity loss and sources of concern for human well-being. Understanding how these drivers operate and interact and how they might be mitigated are among the most pressing questions facing humanity. Here, we show how macrophysiology--the investigation of variation in physiological traits over large geographical, temporal and phylogenetic scales--can contribute significantly to answering these questions. We do so by demonstrating, for each of the MA drivers, how a macrophysiological approach can or has helped elucidate the impacts of these drivers and their interactions. Moreover, we illustrate that a large-scale physiological perspective can provide insights into previously unrecognized threats to diversity, such as the erosion of physiological variation and stress tolerance, which are a consequence of the removal of large species and individuals from the biosphere. In so doing we demonstrate that environmental physiologists have much to offer the scientific quest to resolve major environmental problems.  相似文献   

10.
High variability in the strength of species interactions is usually considered a source of unstable or unpredictable community patterns. However, recent theoretical work suggests that some types of variance in interaction strength may actually promote stability. Here we provide the first empirical evidence that highly variable, context-dependent species interaction strengths and resilient community patterns can be two sides of the same coin. Field experiments show that a persistent rocky intertidal seascape is remarkably resilient to multiple sources of environmental stochasticity largely because of scale dependent and variable species interaction strengths. Biological interactions exert a stabilizing effect because their intensity varies systematically with changes in both physical sources of mortality of established species, as well as recruitment of new individuals. Strong variation in species interaction strengths with disturbance size and environmental conditions is ubiquitous in nature. Elucidating when this context dependency will be stabilizing is critical to predict community-level responses to anthropogenic disturbances.  相似文献   

11.
Summary Using a model that allows the mean and variance of investment by parents in offspring to evolve in response to change in degree of temporal environmental variation, this paper shows that both parental investment parameters should increase with increases in temporal variation. If offspring receiving greater parental investment are viable over a broader range of environmental conditions, then increased temporal environmental variation can select for increases in parental investment. The variance in parental investment also may increase with increases in temporal variation, but there is a threshold level of temporal variation that must be exceeded before variance in parental investment is adaptive. Thus phenotypic variance in parental investment is not adaptive in all temporally varying environments. Further, increased overlap among generations reduces the expected effects of temporal variation on the mean and variance in parental investment. Thus a negative correlation between length of reproductive life and both measures of investment is expected. There is support for the predictions of this model in some animal groups, but not among plants. Possible reasons for the lack of support among plants are discussed and directions for future research aimed at distinguishing adaptive and maladaptive phenotypic variance in parental investment are suggested.  相似文献   

12.
Theory predicts that the temporal stability of productivity, measured as the ratio of the mean to the standard deviation of community biomass, increases with species richness and evenness. We used experimental species mixtures of grassland plants to test this hypothesis and identified the mechanisms involved. Additionally, we tested whether biodiversity, productivity and temporal stability were similarly influenced by particular types of species interactions. We found that productivity was less variable among years in plots planted with more species. Temporal stability did not depend on whether the species were planted equally abundant (high evenness) or not (realistically low evenness). Greater richness increased temporal stability by increasing overyielding, asynchrony of species fluctuations and statistical averaging. Species interactions that favoured unproductive species increased both biodiversity and temporal stability. Species interactions that resulted in niche partitioning or facilitation increased both productivity and temporal stability. Thus, species interactions can promote biodiversity and ecosystem services.  相似文献   

13.
It has been demonstrated that the interplay between negative and positive interactions simultaneously shapes community structure and composition. However, few studies have attempted to examine the effect of facilitation on compositional changes in communities through time. Additionally, due to the difficulties in collecting the long-term data, it would be useful to indicate the rate of temporal turnover using a readily obtainable metric. Using an individual-based model incorporating plant strategies, we examined the role of facilitation on the temporal turnover of communities located at different positions along an environmental gradient for three model scenarios: CM without facilitation; CFM-U, a unimodal relationship between facilitation and environmental severity; and CFM-L, a positively linear relationship between facilitation and environmental severity. Our results demonstrated that facilitation could increase, decrease or have no remarkable effect on temporal turnover. The specific outcome depended on the location of the focal community across the environmental gradient and the model employed. Compared with CM, the inclusion of positive interactions (i.e. CFM-U and CFM-L), at intermediate environmental stress levels (such as S = 0.7 and 0.8) resulted in lower Bray-Curtis similarity values; at other severity levels, facilitation slowed down (such as S = 0.3 and 0.4 at low to medium stress levels, and S = 0.9 at high stress levels) or had only a subtle effect (such as at S = 0.1) on temporal turnover. We also found that the coefficient of variation (CV) in species abundances and the rate of temporal variability showed a significant quadratic relationship. Our theoretical analysis contributes to the understanding of factors driving temporal turnover in biotic communities, and presents a potential metric (i.e. CV in species abundances) assessing the consequences of ongoing environmental change on community structure.  相似文献   

14.
Disentangling the different processes structuring ecological communities is a long‐standing challenge. In species‐rich ecosystems, most emphasis has so far been given to environmental filtering and competition processes, while facilitative interactions between species remain insufficiently studied. Here, we propose an analysis framework that not only allows for identifying pairs of facilitating and facilitated species, but also estimates the strength of facilitation and its variation along environmental gradients. Our framework combines the analysis of both co‐occurrence and co‐abundance patterns using a moving window approach along environmental gradients to control for potentially confounding effects of environmental filtering in the co‐abundance analysis. We first validate our new approach against community assembly simulations, and exemplify its potential on a large 1,134 plant community plots dataset. Our results generally show that facilitation intensity was strongest under cold stress, whereas the proportion of facilitating and facilitated species was higher under drought stress. Moreover, the functional distance between individual facilitated species and their facilitating species significantly changed along the temperature–moisture gradient, and seemed to influence facilitation intensity, although no general positive or general negative trend was discernible among species. The main advantages of our robust framework are as follows: It enables detecting facilitating and facilitated species in species‐rich systems, and it allows identifying the directionality and intensity of facilitation in species pairs as well as its variation across long environmental gradients. It thus opens numerous opportunities for incorporating functional (and phylogenetic) information in the analysis of facilitation patterns. Our case study indicated high complexity in facilitative interactions across the stress gradient and revealed new evidence that facilitation, similarly to competition, can operate between functionally similar and dissimilar species. Extending the analyses to other taxa and ecosystems will foster our understanding how complex interspecific interactions promote biodiversity.  相似文献   

15.
Understanding the scales at which environmental variability affects populations is critical for projecting population dynamics and species distributions in rapidly changing environments. Here we used a multilevel Bayesian analysis of range‐wide survey data for Adélie penguins to characterize multidecadal and annual effects of sea ice on population growth. We found that mean sea ice concentration at breeding colonies (i.e., “prevailing” environmental conditions) had robust nonlinear effects on multidecadal population trends and explained over 85% of the variance in mean population growth rates among sites. In contrast, despite considerable year‐to‐year fluctuations in abundance at most breeding colonies, annual sea ice fluctuations often explained less than 10% of the temporal variance in population growth rates. Our study provides an understanding of the spatially and temporally dynamic environmental factors that define the range limits of Adélie penguins, further establishing this iconic marine predator as a true sea ice obligate and providing a firm basis for projection under scenarios of future climate change. Yet, given the weak effects of annual sea ice relative to the large unexplained variance in year‐to‐year growth rates, the ability to generate useful short‐term forecasts of Adélie penguin breeding abundance will be extremely limited. Our approach provides a powerful framework for linking short‐ and longer term population processes to environmental conditions that can be applied to any species, facilitating a richer understanding of ecological predictability and sensitivity to global change.  相似文献   

16.
Environmental variation is classically expected to affect negatively population growth and to increase extinction risk, and it has been identified as a major determinant of establishment failures in the field. Yet, recent theoretical investigations have shown that the structure of environmental variation and more precisely the presence of positive temporal autocorrelation might alter this prediction. This is particularly likely to affect the establishment dynamics of biological control agents in the field, as host–parasitoid interactions are expected to induce temporal autocorrelation in host abundance. In the case where parasitoid populations display overcompensatory dynamics, the presence of such positive temporal autocorrelation should increase their establishment success in a variable environment. We tested this prediction in laboratory microcosms by introducing parasitoids to hosts whose abundances were manipulated to simulate uncorrelated or positively autocorrelated variations in carrying capacity. We found that environmental variability decreased population size and increased parasitoid population variance, which is classically expected to extinction risk. However, although exposed to significant environmental variation, we found that parasitoid populations experiencing positive temporal autocorrelation in host abundance were more likely to persist than populations exposed to uncorrelated variation. These results confirm that environmental variation is a key determinant of extinction dynamics that can have counterintuitive effects depending on its autocorrelation structure.  相似文献   

17.
This paper addresses effects of trophic complexity on basal species, in a Lotka–Volterra model with stochasticity. We use simple food web modules, with three trophic levels, and expose every species to random environmental stochasticity and analyze (1) the effect of the position of strong trophic interactions on temporal fluctuations in basal species’ abundances and (2) the relationship between fluctuation patterns and extinction risk. First, the numerical simulations showed that basal species do not simply track the environment, i.e. species dynamics do not simply mirror the characteristics of the applied environmental stochasticity. Second, the extinction risk of species was related to the fluctuation patterns of the species.More specifically, we show (i) that despite being forced by random stochasticity without temporal autocorrelation (i.e. white noise), there is significant temporal autocorrelation in the time series of all basal species’ abundances (i.e. the spectra of basal species are red-shifted), (ii) the degree of temporal autocorrelation in basal species time series is affected by food web structure and (iii) the degree of temporal autocorrelation tend to be correlated to the extinction risks of basal species.Our results emphasize the role of food web structure and species interactions in modifying the response of species to environmental variability. To shed some light on the mechanisms we compare the observed pattern in abundances of basal species with analytically predicted patterns and show that the change in the predicted pattern due to the addition of strong trophic interactions is correlated to the extinction risk of the basal species. We conclude that much remain to be understood about the mechanisms behind the interaction among environmental variability, species interactions, population dynamics and vulnerability before we quantitatively can predict, for example, effects of climate change on species and ecological communities. Here, however, we point out a new possible approach for identifying species that are vulnerable to environmental stochasticity by checking the degree of temporal autocorrelation in the time series of species. Increased autocorrelation in population fluctuations can be an indication of increased extinction risk.  相似文献   

18.
Recent advances in stochastic demography provide unique insights into the probable effects of increasing environmental variability on population dynamics, and these insights can be substantially different compared with those from deterministic models. Stochastic variation in structured population models influences estimates of population growth rate, persistence and resilience, which ultimately can alter community composition, species interactions, distributions and harvesting. Here, we discuss how understanding these demographic consequences of environmental variation will have applications for anticipating changes in populations resulting from anthropogenic activities that affect the variance in vital rates. We also highlight new tools for anticipating the consequences of the magnitude and temporal patterning of environmental variability.  相似文献   

19.
Sexual selection can increase rates of adaptation by imposing strong selection in males, thereby allowing efficient purging of the mutation load on population fitness at a low demographic cost. Indeed, sexual selection tends to be male‐biased throughout the animal kingdom, but little empirical work has explored the ecological sensitivity of this sex difference. In this study, we generated theoretical predictions of sex‐specific strengths of selection, environmental sensitivities and genotype‐by‐environment interactions and tested them in seed beetles by manipulating either larval host plant or rearing temperature. Using fourteen isofemale lines, we measured sex‐specific reductions in fitness components, genotype‐by‐environment interactions and the strength of selection (variance in fitness) in the juvenile and adult stage. As predicted, variance in fitness increased with stress, was consistently greater in males than females for adult reproductive success (implying strong sexual selection), but was similar in the sexes in terms of juvenile survival across all levels of stress. Although genetic variance in fitness increased in magnitude under severe stress, heritability decreased and particularly so in males. Moreover, genotype‐by‐environment interactions for fitness were common but specific to the type of stress, sex and life stage, suggesting that new environments may change the relative alignment and strength of selection in males and females. Our study thus exemplifies how environmental stress can influence the relative forces of natural and sexual selection, as well as concomitant changes in genetic variance in fitness, which are predicted to have consequences for rates of adaptation in sexual populations.  相似文献   

20.
Plant-plant interactions and environmental change   总被引:3,自引:0,他引:3  
Natural systems are being subjected to unprecedented rates of change and unique pressures from a combination of anthropogenic environmental change drivers. Plant-plant interactions are an important part of the mechanisms governing the response of plant species and communities to these drivers. For example, competition plays a central role in mediating the impacts of atmospheric nitrogen deposition, increased atmospheric carbon dioxide concentrations, climate change and invasive nonnative species. Other plant-plant interaction processes are also being recognized as important factors in determining the impacts of environmental change, including facilitation and evolutionary processes associated with plant-plant interactions. However, plant-plant interactions are not the only factors determining the response of species and communities to environmental change drivers - their activity must be placed within the context of the wide range of factors that regulate species, communities and ecosystems. A major research challenge is to understand when plant-plant interactions play a key role in regulating the impact of environmental change drivers, and the type of role that plant-plant interactions play. Although this is a considerable challenge, some areas of current research may provide the starting point to achieving these goals, and should be pursued through large-scale, integrated, multisite experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号