首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Kooyers NJ  Olsen KM 《Molecular ecology》2012,21(10):2455-2468
White clover is polymorphic for cyanogenesis (HCN production after tissue damage), and this herbivore defence polymorphism has served as a classic model for studying adaptive variation. The cyanogenic phenotype requires two interacting biochemical components; the presence/absence of each component is controlled by a simple Mendelian gene (Ac/ac and Li/li). Climate-associated cyanogenesis clines occur in both native (Eurasian) and introduced populations worldwide, with cyanogenic plants predominating in warmer locations. Moreover, previous studies have suggested that epistatic selection may act within populations to maintain cyanogenic (AcLi) plants and acyanogenic plants that lack both components (acli plants) at the expense of plants possessing a single component (Acli and acLi plants). Here, we examine the roles of selection, gene flow and demography in the evolution of a latitudinal cyanogenesis cline in introduced North American populations. Using 1145 plants sampled across a 1650 km transect, we determine the distribution of cyanogenesis variation across the central United States and investigate whether clinal variation is adaptive or an artefact of population introduction history. We also test for the evidence of epistatic selection. We detect a clear latitudinal cline, with cyanogenesis frequencies increasing from 11% to 86% across the transect. Population structure analysis using nine microsatellite loci indicates that the cline is adaptive and not a by-product of demographic history. However, we find no evidence for epistatic selection within populations. Our results provide strong evidence for rapid adaptive evolution in these introduced populations, and they further suggest that the mechanisms maintaining adaptive variation may vary among populations of a species.  相似文献   

2.
N J Kooyers  K M Olsen 《Heredity》2013,111(6):495-504
The recurrent evolution of adaptive clines within a species can be used to elucidate theselective factors and genetic responses that underlie adaptation. White clover ispolymorphic for cyanogenesis (HCN release with tissue damage), and climate-associatedcyanogenesis clines have evolved throughout the native and introduced species range. Thispolymorphism arises through two independently segregating Mendelian polymorphisms for thepresence/absence of two required components: cyanogenic glucosides and theirhydrolyzing enzyme linamarase. Cyanogenesis is commonly thought to function in herbivoredefense; however, the individual cyanogenic components may also serve other physiologicalfunctions. To test whether cyanogenesis clines have evolved in response to the sameselective pressures acting on the same genetic targets, we examined cyanogenesis clineshape and its environmental correlates in three world regions: southern New Zealand, thecentral United States and the US Pacific Northwest. For some regional comparisons, clineshapes are remarkably similar despite large differences in the spatial scales over whichclines occur (40–1600 km). However, we also find evidence for majordifferences in both the agents and targets of selection among the sampled clines.Variation in cyanogenesis frequency is best predicted using a combination of minimumwinter temperature and aridity variables. Together, our results provide evidence thatrecurrent adaptive clines do not necessarily reflect shared adaptive processes.  相似文献   

3.
    
Cyclins are key regulators of cell cycle progression. Previous studies have shown that cyclin genes in plants can be divided into 10 groups. However, because those studies only focused on genes from two well-known model plants (i.e., Arabidopsis thaliana (L.) Heynh. and Oryza sativa L.), it remains unclear whether the 10 groups are reasonably defined. In this study, by analyzing the genomes of 10 representative plants (Chlamydomonas reinhardtii P. A. Dang, Physcomitrella patens(Hedw.) Bruch & Schimp., Selaginella moellendorffii Hieron., Picea abies (L.) H. Karst., Amborella trichopoda Baill., A. thaliana, Populus trichocarpa Torr. & A. Gray ex Hook., Vitis vinifera L., O. sativa, and Sorghum bicolor (L.) Moench), we estimated the phylogenetic relationships of plant cyclins and investigated their evolutionary patterns. We confirmed that plant cyclins can be classified into 10 groups, although only eight ancestral genes may have existed in the most recent common ancestor of extant green plants. We also found that, due to the frequent occurrences of gene duplication events, several groups have expanded extensively in seed plants and, particularly, flowering plants, so that multiple genes belonging to different subgroups are present in a species. Reconciliation of the evolutionary histories of these groups and subgroups further led to the identification of evolutionarily highly conserved and rapidly duplicating gene lineages. These results will guide the classification and nomenclature of plant cyclins and help understand the conservativeness and variation in their functions.  相似文献   

4.
    
Leishmania (Leishmania) major is an important agent of cutaneous leishmaniasis, having as a vector sandflies belonging to the genus Phlebotomus. Although this species has been described as restricted to the Old World, parasites similar to L. major have been isolated from South American patients who have never travelled abroad. These parasites were named “L. major-like”, and several studies have been carried out to characterise them biochemically, molecularly, and biologically. However, the phylogenetic origin of these isolates is still unknown. In the present study we characterised three L. major-like isolates, named BH49, BH121 and BH129, using comparative genomics approaches. We evaluated the presence of gene and segmental duplications/deletions and the presence of aneuploidies that could explain the differences in infectivity observed in the BH49 and BH121 isolates. All isolates presented a pattern of mosaic aneuploidy and gene copy number variation, which are common in the genus Leishmania. Virulence factors such as phosphatases and peptidases were found to have increased gene copy numbers in the infective isolate, which could explain the difference in infectivity previously observed between BH121 and BH49. Phylogenetic analyses revealed that BH49, BH121 and BH129 L. major-like grouped with L. major isolates, and suggest they were imported from the Old World in at least two independent events. We suggest that new epidemiological inquiries should also evaluate L. major infections in South America, to assess the epidemiological importance of this species in the New World.  相似文献   

5.
6.
7.
    
Theoretical population genetics has been mostly developed for sexually reproducing diploid and for monoploid (haploid) organisms, focusing on eukaryotes. The evolution of bacteria and archaea is often studied by models for the allele dynamics in monoploid populations. However, many prokaryotic organisms harbor multicopy replicons—chromosomes and plasmids—and theory for the allele dynamics in populations of polyploid prokaryotes remains lacking. Here, we present a population genetics model for replicons with multiple copies in the cell. Using this model, we characterize the fixation process of a dominant beneficial mutation at 2 levels: the phenotype and the genotype. Our results show that depending on the mode of replication and segregation, the fixation of the mutant phenotype may precede genotypic fixation by many generations; we term this time interval the heterozygosity window. We furthermore derive concise analytical expressions for the occurrence and length of the heterozygosity window, showing that it emerges if the copy number is high and selection strong. Within the heterozygosity window, the population is phenotypically adapted, while both alleles persist in the population. Replicon ploidy thus allows for the maintenance of genetic variation following phenotypic adaptation and consequently for reversibility in adaptation to fluctuating environmental conditions.  相似文献   

8.
    
Cultured cells are widely used in molecular biology despite poor understanding of how cell line genomes change in vitro over time. Previous work has shown that Drosophila cultured cells have a higher transposable element content than whole flies, but whether this increase in transposable element content resulted from an initial burst of transposition during cell line establishment or ongoing transposition in cell culture remains unclear. Here, we sequenced the genomes of 25 sublines of Drosophila S2 cells and show that transposable element insertions provide abundant markers for the phylogenetic reconstruction of diverse sublines in a model animal cell culture system. DNA copy number evolution across S2 sublines revealed dramatically different patterns of genome organization that support the overall evolutionary history reconstructed using transposable element insertions. Analysis of transposable element insertion site occupancy and ancestral states support a model of ongoing transposition dominated by episodic activity of a small number of retrotransposon families. Our work demonstrates that substantial genome evolution occurs during long-term Drosophila cell culture, which may impact the reproducibility of experiments that do not control for subline identity.  相似文献   

9.
10.
    
Rapid adaptation to novel environments may drive changes in genomic regions through natural selection. However, the genetic architecture underlying these adaptive changes is still poorly understood. Using population genomic approaches, we investigated the genomic architecture that underlies rapid parallel adaptation of Coilia nasus to fresh water by comparing four freshwater-resident populations with their ancestral anadromous population. Linkage disequilibrium network analysis and population genetic analyses revealed two putative large chromosome inversions on LG6 and LG22, which were enriched for outlier loci and exhibited parallel association with freshwater adaptation. Drastic frequency shifts and elevated genetic differentiation were observed for the two chromosome inversions among populations, suggesting that both inversions would undergo divergent selection between anadromous and resident ecotypes. Enrichment analysis of genes within chromosome inversions showed significant enrichment of genes involved in metabolic process, immunoregulation, growth, maturation, osmoregulation, and so forth, which probably underlay differences in morphology, physiology and behavior between the anadromous and freshwater-resident forms. The availability of beneficial standing genetic variation, large optimum shift between marine and freshwater habitats, and high efficiency of selection with large population size could lead to the observed rapid parallel adaptive genomic change. We propose that chromosomal inversions might have played an important role during the evolution of rapid parallel ecological divergence in the face of environmental heterogeneity in C. nasus. Our study provides insights into the genomic basis of rapid adaptation of complex traits in novel habitats and highlights the importance of structural genomic variants in analyses of ecological adaptation.  相似文献   

11.
Pigmentation is one of the most variable traits within and between Drosophila species. Much of this diversity appears to be adaptive, with environmental factors often invoked as selective forces. Here, we describe the geographic structure of pigmentation in Drosophila americana and evaluate the hypothesis that it is a locally adapted trait. Body pigmentation was quantified using digital images and spectrometry in up to 10 flies from each of 93 isofemale lines collected from 17 locations across the United States and found to correlate most strongly with longitude. Sequence variation at putatively neutral loci showed no evidence of population structure and was inconsistent with an isolation-by-distance model, suggesting that the pigmentation cline exists despite extensive gene flow throughout the species range, and is most likely the product of natural selection. In all other Drosophila species examined to date, dark pigmentation is associated with arid habitats; however, in D. americana, the darkest flies were collected from the most humid regions. To investigate this relationship further, we examined desiccation resistance attributable to an allele that darkens pigmentation in D. americana. We found no significant effect of pigmentation on desiccation resistance in this experiment, suggesting that pigmentation and desiccation resistance are not unequivocally linked in all Drosophila species.  相似文献   

12.
13.
    
With their direct link to individual fitness, genes of the major histocompatibility complex (MHC) are a popular system to study the evolution of adaptive genetic diversity. However, owing to the highly dynamic evolution of the MHC region, the isolation, characterization and genotyping of MHC genes remain a major challenge. While high‐throughput sequencing technologies now provide unprecedented resolution of the high allelic diversity observed at the MHC, in many species, it remains unclear (i) how alleles are distributed among MHC loci, (ii) whether MHC loci are linked or segregate independently and (iii) how much copy number variation (CNV) can be observed for MHC genes in natural populations. Here, we show that the study of allele segregation patterns within families can provide significant insights in this context. We sequenced two MHC class I (MHC‐I) loci in 1267 European barn owls (Tyto alba), including 590 offspring from 130 families using Illumina MiSeq technology. Coupled with a high per‐individual sequencing coverage (~3000×), the study of allele segregation patterns within families provided information on three aspects of the architecture of MHC‐I variation in barn owls: (i) extensive sharing of alleles among loci, (ii) strong linkage of MHC‐I loci indicating tandem architecture and (iii) the presence of CNV in the barn owl MHC‐I. We conclude that the additional information that can be gained from high‐coverage amplicon sequencing by investigating allele segregation patterns in families not only helps improving the accuracy of MHC genotyping, but also contributes towards enhanced analyses in the context of MHC evolutionary ecology.  相似文献   

14.
15.
    
The adaptive radiations of East African cichlid fish in the Great Lakes Victoria, Malawi, and Tanganyika are well known for their diversity and repeatedly evolved phenotypes. Convergent evolution of melanic horizontal stripes has been linked to a single locus harboring the gene agouti-related peptide 2 (agrp2). However, where and when the causal variants underlying this trait evolved and how they drove phenotypic divergence remained unknown. To test the alternative hypotheses of standing genetic variation versus de novo mutations (independently originating in each radiation), we searched for shared signals of genomic divergence at the agrp2 locus. Although we discovered similar signatures of differentiation at the locus level, the haplotypes associated with stripe patterns are surprisingly different. In Lake Malawi, the highest associated alleles are located within and close to the 5′ untranslated region of agrp2 and likely evolved through recent de novo mutations. In the younger Lake Victoria radiation, stripes are associated with two intronic regions overlapping with a previously reported cis-regulatory interval. The origin of these segregating haplotypes predates the Lake Victoria radiation because they are also found in more basal riverine and Lake Kivu species. This suggests that both segregating haplotypes were present as standing genetic variation at the onset of the Lake Victoria adaptive radiation with its more than 500 species and drove phenotypic divergence within the species flock. Therefore, both new (Lake Malawi) and ancient (Lake Victoria) allelic variation at the same locus fueled rapid and convergent phenotypic evolution.  相似文献   

16.
    
Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant‐parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.  相似文献   

17.
人们很早就发现DNA拷贝数变异与特定染色体重组和基因组异常相关这一现象,但最近才知道它与疾病的相关联系。我们对拷贝数变异的原理、最新研究方法,及其与复杂疾病的相关性研究等进展进行了综述;总结了拷贝数变异研究所存在的问题;对拷贝数变异未来的研究重点和需要解决的问题进行了展望。  相似文献   

18.
    
Copy number variations (CNVs) constitute an important class of variation in the human genome and the interpretation of their pathogenicity considering different frequencies across populations is still a challenge for geneticists. Since the CNV databases are predominantly composed of European and non-admixed individuals, and Brazilian genetic constitution is admixed and ethnically diverse, diagnostic screenings on Brazilian variants are greatly difficulted by the lack of populational references. We analyzed a clinical sample of 268 Brazilian individuals, including patients with neurodevelopment disorders and/or congenital malformations. The pathogenicity of CNVs was classified according to their gene content and overlap with known benign and pathogenic variants. A total of 1,504 autosomal CNVs (1,207 gains and 297 losses) were classified as benign (92.9%), likely benign (1.6%), VUS (2.6%), likely pathogenic (0.2%) and pathogenic (2.7%). Some of the CNVs were recurrent and with frequency increased in our sample, when compared to populational open resources of structural variants: 14q32.33, 22q11.22, 1q21.1, and 1p36.32 gains. Thus, these highly recurrent CNVs classified as likely benign or VUS were considered non-pathogenic in our Brazilian sample. This study shows the relevance of introducing CNV data from diverse cohorts to improve on the interpretation of clinical impact of genomic variations.  相似文献   

19.
Li PY  He FC  Zhou GQ 《遗传》2011,33(8):870-878
微RNA(microRNA,miRNA)是新发现的一类进化上高度保守的重要的转录后调控因子,通过调节基因的表达而参与调控细胞凋亡、增殖及分化等生理过程,同时与肿瘤等疾病的发生发展密切相关。近年来研究发现,miRNA、miRNA生物合成通路基因及miRNA的靶基因结合位点的遗传变异(例如单核苷酸多态性和拷贝数变异等)可影响miRNA调控功能的发挥,并产生显著的遗传学效应。文章主要综述了miRNA相关的遗传变异与肿瘤易感性和临床转归等的研究进展。  相似文献   

20.
The presence of the cyanogenic glycoside prunasin in leaves and fruits of Cotoneaster species was confirmed by GLC. In addition amygdalin was found in ripe fruits. The variation in prunasin and amygdalin was measured during development of the flowers and fruits of C. praecox and C. bullata. The importance of these findings for chemotaxonomy and physiology is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号