首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
By using intracellular injection of horseradish peroxidase into the lumbar motoneurones of the isolated spinal cord of the frog Rana ridibunda the structure of axon collaterals was studied. It was shown that about 50% of the HRP-stained cells had mainly one axon collateral of the 1st order. The subsequent branching patterns of the collaterals showed considerable variations. The number of swellings in various collaterals was from 10 up 100. The mean diameter of swellings varied from 0.8 up 10.0 microns. It is believed that the axon collateral swellings from contacts on the dendrites of the nerve cells mainly. Apparent axosomatic contacts were revealed on the motoneurons and small nerve cells. As in the cat, collateral swellings were found on the dendrites of the parent motoneuron. Obtained morphological data the structure of motor axon collaterals in the frog are compared with those in the cat. Functional significance of the axon collateral in the frog is discussed.  相似文献   

2.
The lateral vestibulospinal tract (LVST) is one of the major descending pathways controlling the extensor musculature of the body. To determine whether individual LVST neurons terminating in the lumbosacral spinal segments issue collaterals more rostrally to exert an influence of the cervical ventral horn intracellular recording and biocytin labeling techniques were used in the squirrel monkey. Only neurons monosynaptically related to the 8th nerve and antidromically identified to project below T12 were selected for study. The axon course through the brainstem and cervical spinal cord was examined in 37 LVST neurons. The average distance of recovered axon was 17.3 mm (4.5-31.7 mm). None could be antidromically activated from shocks applied to the rostral medial longitudinal fasciculus near the 3rd nuclei; and no collaterals were observed in the brainstem. Of the 37 neurons, only 1 axon issued a collateral to innervate the ventral horn, primarily in the region of the spinal accessory motoneurons; this single collateral provided a relatively minor input compared to that of LVST neurons terminating in the cervical cord. Thus, secondary, caudal-projecting LVST neurons represent a private, and mostly rapid, communication pathway between dorsal Deiters' nucleus and the motor circuits controlling the lower limbs and tail.  相似文献   

3.
Horseradish peroxidase (HRP) tracing methods and subsequent computer reconstruction were used to study the structural organization of sensory-motoneuron connections in turtles. HRP was applied through suction electrodes to thin dorsal and ventral root filaments of superfused isolated lumbar spinal cord of the turtle Testudo horsfieldi. Single motoneurons were labeled ionophoretically with intracellular glass microelectrodes. Labeled elements were examined under a light microscope. The Eutectic neuron tracing system and its associated program were used for three-dimensional reconstructions and morphometry. The distribution of afferent fibers of the dorsal root and their terminations were presented in a new scheme in which new zones, in addition to those that were already well known, were shown, including the following: in the Lissauer zone, motor nuclei, and ventrolateral funiculus, as well as in the contralateral medial gray matter (laminae IV–V). Unlike in frogs, the motoneuron dendritic field in turtles was restricted to an ellipsoid space with a short axis in the rostrocaudal direction (300–500 µm). The afferent fibers of the dorsal root connected to motoneurons produced very short branches in a restricted rostrocaudal direction (50–70 μm). One fiber collateral of the dorsal root had about 80 synapse-like enlargements (approximately tenfold fewer than in frogs). Putative sensory-motoneuron contacts were found on the I–VII-order dendritic segments of the dorsal and ventro-medial dendritic trees. It was shown that, in turtles, only one first-order collateral of the dorsal root fiber participated in the sensory-motoneuron connection with a small number (about 4) of putative contacts, which is also one order less than in frogs. It is likely that the simplification of the synapse structure in turtles is compensated by a higher efficiency of the signal transmission comparable to that in mammals.  相似文献   

4.
1. The electrical activity of Renshaw cells monosynaptically excited by ventral root stimulation and disynaptically excited by electric stimulation of the group I afferents in the GS nerve has been recorded and their response to individual sinusoidal stretches of the deefferented GS muscle tested for different amplitudes and durations of the stimulus. 2. The experimental data indicate that the Rensahw cell responses are not only length dependent but also rate dependent. This finding indicates that the same Renshaw cells receive recurrent collaterals of both tonic and phasic motoneurons. 3. The observation that the discharge of Renshaw cells is particularly sensitive to the velocity of stretch suggests that the recurrent collaterals of large phasic motoneurons, which are recruited during high velocity stretches, exert a stronger excitatory action on Renshaw cells than do axon collaterals of the smaller tonic motoneurons, which are selectively stimulated during low velocity stretches.  相似文献   

5.
Karamyan  O. A.  Kozhanov  V. M.  Chmykhova  N. M. 《Neurophysiology》1988,20(2):186-191
Intracellular investigations into interaction between lumbar motoneurons were made during ventral root stimulation in spinal cord isolated from 9 to 14-day-old rats and horseradish peroxidase injection. It was found that electronic interaction is brought about by contacts between a moderate number of adjacent motoneurons and does not lead to generation of action potentials. A potential chemical (excitatory) as well as electronic interaction between motoneurons was discovered, probably occurring via recurrent motor axon collaterals. It was shown that the way in which one motoneuron is influenced by others may be a factor of its functional pattern.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 243–250, March–April, 1988.  相似文献   

6.
Structure of central projections of the motoneuron axons of the spinal cord of the lamprey Lampetra fluviatilis was studied using labeling with horseradish peroxidase in vitro. Axons of the lamprey spinal cord motoneurons were found to have collaterals terminating in ventral columns of the white matter, in which they establish contacts with dendrites of adjacent motoneurons, which can be considered as a substrate of the intermotoneuron interaction. Some axons of motoneurons give bifurcations to two equal branches connected with two neighboring ventral roots, which seems to facilitate propagation of rhythmic activity of locomotor generator in the rostro caudal direction for providing continuous wave of contraction of myotome muscles in the course of undulating movement.  相似文献   

7.
Motoneurons were labelled by retrograde axonal transport of HRP applied to transected spinal nerves in 9-11-day chick embryos in the in vitro spinal cord preparation. Recurrent motor axon collaterals were revealed in 17 of 48 motor axons which could be followed in the edge regions of labelled motoneuronal pools. The results, coupled with author's earlier electrophysiological data, provide further evidence for the presence of the Renshaw inhibition in the avian spinal cord.  相似文献   

8.
Dorsal root ganglion neurons project axons to specific target layers in the gray matter of the spinal cord, according to their sensory modality. Using an in vivo approach, we demonstrate an involvement of the two immunoglobulin superfamily cell adhesion molecules axonin-1/TAG-1 and F11/F3/contactin in subpopulation-specific sensory axon guidance. Proprioceptive neurons, which establish connections with motoneurons in the ventral horn, depend on F11 interactions. Nociceptive fibers, which target to layers in the dorsal horn, require axonin-1 for pathfinding. In vitro NgCAM and NrCAM were shown to bind to both axonin-1 and F11. However, despite this fact and despite their ubiquitous expression in the spinal cord, NgCAM and NrCAM are selective binding partners for axonin-1 and F11 in sensory axon guidance. Whereas nociceptive pathfinding depends on NgCAM and axonin-1, proprioceptive fibers require NrCAM and F11.  相似文献   

9.
The structure of connections between lumbar motoneurons was investigated in preparations of spinal cord isolated from young rats. This involved applying horseradish peroxidase to the ventral root and intracellular injection of the same enzyme into motoneurons. The possibility of dendro-dendritic, dendro-somatic, and somato-somatic contacts between motoneurons was shown up in light mocroscopy studies. Recurrent collaterals of motor axons were revealed and they are though to form contacts with dendrites and perikarya of the motoneurons. The findings obtained from morphological experiments are discussed in the light of data from electrophysiological analysis of motoneuronal postsynaptic potentials produced by ventral root stimulation.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 340–350, May–June, 1988.  相似文献   

10.
Responses arising in ventral root filaments and antidromic discharges of single sympathetic preganglionic neurons in the lateral horn of gray matter in segment L2 of the cat spinal cord were recorded during stimulation of the white rami communicantes in the same segment. Conduction velocities, thresholds, and refractory periods were determined for individual groups of sympathetic preganglionic fibers. Excitation was conducted more slowly along the intramedullary part of the axons of some sympathetic neurons than along the extramedullary part. In a third group of neurons studied the second antidromic discharge appeared in response to paired stimulation if the interstimulus interval was appreciably longer than their refractory period. It is postulated that axons of sympathetic preganglionic neurons in the lumber spinal cord have a thin intramedullary part and are supplied with recurrent collaterals.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 6, No. 2, pp. 143–151, March–April, 1974.  相似文献   

11.
The effects of a number of peptides which are found in the gastrointestinal tract have been ascertained on the direct current recorded dorsal and ventral root responses of the isolated hemisected toad spinal cord. Motilin, substance P, bombesin, neurotensin, and thyrotropin releasing hormone had potent depolarizing actions on dorsal root terminals and motoneurons. These substances evoked discernable effects at concentrations as low as 10--7 M, or even lower with motilin. The effects of motilin, neurotensin, and thyrotropin-releasing hormone were greatly reduced or abolished by perfusion of the preparation with tetrodotoxin. Adrenocorticotrophic hormone, secretin, and pancreozymin (cholecystokinin) also depolarized dorsal root terminals and motoneurons. The effects of secretin and cholecystokinin were not abolished by tetrodotoxin. Leu- and Met-enkephalin had weak hyperpolarizing actions on the dorsal and ventral root potentials of repetitively stimulated preparations. Gastrin, gastric inhibitory peptide, glucagon, and somatostatin had no apparent effects on the responses of the preparation. Angiotensin and vasopressin both had rather weak depolarizing effects on the dorsal and ventral roots.  相似文献   

12.
The present study explores the role of SEMA3A (collapsin-1) in the temporal and spatial regulation of developing sensory projections in the chick spinal cord. During development, SEMA3A mRNA (SEMA3A) is first expressed throughout the spinal gray matter, but disappears from the dorsal region when small caliber (trkA(+)) sensory axon collaterals first grow into the dorsal horn. In explant cultures of spinal cord segments with attached sensory ganglia, the spatial extent of SEMA3A expression varied in different explants, but in each case the growth of trkA(+) sensory collaterals was largely excluded from areas of SEMA3A expression. To test if SEMA3A had a direct effect on sensory axon growth, we injected recombinant protein into the explants before placing them in culture. Increased levels of SEMA3A substantially reduced the ingrowth of trkA(+) axons, whereas trkC(+) axon collaterals were not affected. Consistent with the insensitivity of trkC(+) collaterals to SEMA3A, these collaterals did not express neuropilin-1, a receptor for SEMA3A. The inhibitory effects of SEMA3A on trkA(+) axons within the spinal cord suggests that the fall in SEMA3A expression in the dorsal horn may contribute to the initiation of growth of these axons into gray matter. In addition, the observation that trkA(+) axons frequently grew close to but rarely over areas of SEMA3A expression suggests that semaphorin may act principally as a short-range guidance cue within the spinal cord.  相似文献   

13.
Strain magnitude, strain rate, axon location, axon size, and the local tissue stress state have been proposed as the mechanisms governing primary cellular damage within the spinal cord parenchyma during slow compression injury. However, the mechanism of axon injury has yet to be fully elucidated. The objective of this study was to correlate cellular damage within the guinea pig spinal cord white matter, quantified by a horseradish peroxidase (HRP) exclusion test, with tissue-level stresses and strains using a combined experimental and computational approach. Force-deformation curves were acquired by transversely compressing strips of guinea pig spinal cord white matter at a quasi-static rate. Hyperelastic material parameters, derived from a Mooney-Rivlin constitutive law, were varied within a nonlinear, plane strain finite element model of the white matter strips until the computational force-deformation curve converged to the experimental results. In addition, white matter strips were subjected to nominal compression levels of 25%, 50%, 70%, and 90% to assess axonal damage by quantifying HRP uptake. HRP uptake density increased with tissue depth and with increased nominal compression. Using linear and nonlinear regression analyses, the strongest correlations with HRP uptake density were found for groups of tissue-level stresses and groups of log-transformed tissue-level strains.  相似文献   

14.
Parallel recordings of potentials from primary afferent fibers and motoneurons connected monosynaptically with them were obtained in experiments on the isolated, perfused frog spinal cord and this was followed by intra-axonal and intracellular injection of horseradish peroxidase. Terminals of the primary afferent fibers were shown to reach the motor nuclei of the ventral horn, and one fiber could form contacts with several motoneurons. Synapses formed by afferent terminals were found not only on distal, but also on proximal segments of dendrites and also on motoneuron bodies. Synapses were most numerous on the proximal segments of the dendrites and branches of the second-third orders. Recurrent axon collaterals of motoneurons forming synapses with dendrites were found.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 60–68, January–February, 1982.  相似文献   

15.
1. The caudal extent of the collateral arborizations of entering sensory fibres in rat spinal cord was investigated by two methods: bulk labelling of peripheral nerves by injection of horseradish peroxidase conjugated to cholera toxin (B-HRP) and by antidromic stimulation using small currents from microelectrodes in the spinal cord while recording from single units in peripheral nerve or dorsal root. 2. The results show that injection of B-HRP into the sural or sciatic nerve labelled sural afferents in the grey matter three to four segments caudal to their root entry and sciatic nerve fibres were located in S4, the most caudal segment examined, four to six segments caudal to their root entry. 3. Detailed mapping with microelectrode stimulation showed that the parent descending fibres from filaments dissected from the L1 dorsal root coursed more than 20 mm, seven to eight segments caudal to the entry point in the dorsal columns and sent branches into the grey matter. Single units from the sural nerve were also followed caudally into the S2 and S3 spinal cord segments and also issued collateral branches into the grey matter. 4. The present results suggest that there is close agreement in the caudal penetration of long-ranging afferents by using complementary anatomical and electrophysiological methods.  相似文献   

16.
Effects induced in motoneurons and interneurons of the cervical enlargements of the cat spinal cord by stimulation of the lateral and ventral funiculi at the lower thoracic level were studied under conditions producing degeneration of fibers of descending brain systems. Stimulation of this sort evoked PSPs (mainly of mixed character) in 57 of 90 motoneurons tested. In nine motoneurons the primary response consisted of monosynaptic EPSPs evoked by activity of fibers of the lateral funiculus, and in the rest it consisted of polysyanptic (at least disynaptic) EPSPs and IPSPs. Polysynaptic effects arising in the neuron in response to stimulation of the lateral and ventral funiculi usually differed only quantitatively. The intensity of excitatory synaptic action on motoneurons of the proximal muscle (especially thoracid) was much greater than that on motoneurons of distal muscles. Nearly all motoneurons with no synaptic action belonged to the latter group. Stimulation of the lateral and ventral funculi facilitated synaptic action induced in motoneurons by stimulation of high-threshold segmental afferents and led to excitation of interneurons located in the vectral quadrant, and had no effect on interneurons in the dorsal regions of gray matter. These effects are regarded mainly as the result of excitation of long ascending propriospinal pathways in the cervical parts of the cord; it is also postulated that some of them are evoked by the arrival of activity along collaterals of descending propiospinal pathways to the neurons in this region.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 339–347, July–August, 1979.  相似文献   

17.
Abstract— Experimental hind-limb rigidity of spinal origin was produced in cats by temporary occlusion of thoracic aorta and internal mammary arteries. In the lumbar segments (L6- S1) of these rigid cats, the monosynaptic reflex recorded from ventral roots was enhanced whereas the polysynaptic reflexes as well as the dorsal root reflexes were almost abolished. On morphological examination of the lumbar spinal cord, the number of interneurons was greatly reduced, whereas the small sized cells, presumably glial cells, were increased by about two times. Ventral horn motoneurons were also reduced. The lumbar spinal cords of the rigid cats were analysed for amino acid and substance P contents. Four major amino acids, aspartate, glutamate, glycine and GABA, were definitely reduced in both grey and white matter except that the glutamate level in the dorsal white was within the normal range. Content and distribution pattern of substance P were not altered in the lumbar cord of the rigid cats. These results are consistent with the notions that GABA occurs in the dorsal horn interneurons subserving primary afferent depolarisation, and that substance P is concentrated in primary afferent fibre terminals. The implications of the decrease of aspartate, glutamate and glycine in the spinal cord of rigid cats are discussed.  相似文献   

18.
The spinal superreflexia state was modeled in experiments on rats using preliminary transection of the spinal cord and injection (in the course of the acute experiment) of 4-aminopyridine. An extremely high (reaching 15–20 mV) amplitude of monosynaptic reflex discharges (MRs) evoked by stimulation of the dorsal root and recorded from the ventral root (VR) L 4 and the presence of an additional component in the above discharges were phenomena indicative of the development of the above state. Under such conditions, the amplitudes of the discharges evoked in the VR by electrical stimulation of the round window of the labyrinth (vestibular stimulation) and of the discharges elicited by stimulation of the motor cortex under conditions of bilateral transection of the pyramids increased several times. Thresholds of the VR responses to vestibular and cortical stimulations demonstrated an about threefold drop; latencies of the mass responses and responses of single spinal moto-and interneurons decreased about twofold, on average. The pattern of vestibular conditioning effects on the VR MRs changed: in intact animals vestibular stimulation induced inhibition of the VR MRs, while in animals with superreflexia such stimulation led to facilitation of the MRs. Cortical stimulation under conditions of pyramidotomy in both intact animals and animals with superreflexia resulted in facilitation of the VR MRs of a nearly the same intensity. The levels of convergence of the segmental and supraspinal effects on interneurons and motoneurons of the rat spinal cord dramatically increased under superreflexia conditions. The possible mechanisms of augmentation of the descending influences on spinal neuronal systems under the above conditions are discussed. Neirofiziologiya/Neurophysiology, Vol. 38, No. 2, pp. 140–149, March–April, 2006.  相似文献   

19.
The primary divisions of the spinal nerve in the brown caiman characteristically show the following features: (1) the medial ramus was lies in the thoraco-lumbar and caudal regions, and (2) the first cervical and hypoglossal nerves form a single nerve complex from which the ventral and dorsal rami extend. Intramuscular injections of horseradish peroxidase (HRP) established the positions of motoneurons whose axons followed the primary rami. In the ventral horn of the thoracic and caudal spinal cord, the motoneurons of the medial ramus lie ventrally. These motoneurons lie between the epaxial and hypaxial motoneurons. At the spinomedullary junction, the pools of motoneurons innervating the infrahyoid, lingual, and dorsal muscles have a somatotopic organization similar to that observed in the thoraco-lumbar and caudal regions. Thus clear somatotopic organization of the motoneurons that innervate the axial musculature exists at all spinal levels. © 1994 Wiley-Liss, Inc.  相似文献   

20.
There is general agreement that last-order premotor interneurons-a set of neurons that integrate activities generated by the spinal motor apparatus, sensory information and volleys arising from higher motor centres, and transmit the integrated signals to motoneurons through monosynaptic contacts-play crucial roles in the initiation and maintenance of spinal motor activities. Here, we demonstrate the development, neurochemical properties, and axonal projections of a unique group of last-order premotor interneurons within the ventrolateral aspect of the lateral funiculus of the chick lumbosacral spinal cord. Neurons expressing immunoreactivity for neuron-specific enolase were first detected in the ventrolateral white matter at embryonic day 9 (E9). The numbers of immunoreactive neurons were significantly increased at E10-E12, while most of them were gradually concentrated in small segmentally arranged nuclei (referred to as major nuclei of Hofmann) protruding from the white matter in a necklace like fashion dorsal to the ventral roots. The major nuclei of Hofmann became more prominent at E12-E16, but substantial numbers of cells were still located within the ventrolateral white matter (referred to as minor nucleus of Hofmann). The distribution of immunoreactive neurons achieved by E16 was maintained during later developmental stages and was also characteristic of adult animals. After injection of Phaseolus vulgaris-leucoagglutinin unilaterally into the minor nucleus of Hofmann, labeled fibres were detected in the ventrolateral white matter ipsilateral to the injection site. Ascending and descending fibres were revealed throughout the entire rostro-caudal length of the lumbosacral spinal cord. Axon terminals were predominantly found within the lateral motor column and the ventral regions of lamina VII ipsilateral to the injection site. Several axon varicosities made close appositions with somata and dendrites of motoneurons, which were identified as synaptic contacts in a consecutive electron microscopic study. With the postembedding immunogold method, 21 of 97 labeled terminals investigated were immunoreactive for glycine and 2 of them showed immunoreactivity for gamma-aminobutyric acid (GABA). The axon trajectories of neurons within the minor nucleus of Hofmann suggest that some of these cells might represent a population of last-order premotor interneurons. J. Exp. Zool. 286:157-172, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号