首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental support is given for a model concerning the origin of a primordial transport system. The model is based on the facilitated diffusion of amino acids stimulated by aliphatic aldehyde carriers and sugars stimulated by aliphatic amine carriers. The lipid-soluble diffusing species is the Schiff base. The possible role of this simple transport system in the origin of an early protocell is discussed.  相似文献   

2.
Cellular life requires the presence of a set of biochemical mechanisms in order to maintain a predictable process of growth and division. Several attempts have been made towards the building of minimal protocells from a top-down approach, i.e. by using available biomolecules. This type of synthetic approach has so far been only partially successful, and appropriate models of the synthetic protocell cycle might be needed to guide future experiments. In this paper, we present a simple biochemically and physically feasible model of cell replication involving a discrete semi-permeable vesicle with an internal minimal metabolism involving two reactive centers. It is shown that such a system can effectively undergo a whole cell replication cycle. The model can be used as a basic framework to model whole protocell dynamics including more complex sets of reactions. The possible implementation of our design in future synthetic protocells is outlined.  相似文献   

3.
Cells somehow evolved from primordial chemistry and their emergence depended on the co-evolution of the cytoplasm, a genetic system and the cell membrane. It is widely believed that the cytoplasm evolved inside a primordial lipid vesicle, but here I argue that the earliest cytoplasm could have co-evolved to high complexity outside a vesicle on the membrane surface. An invagination of the membrane, aided by an early cytoskeletal system, may have formed the first cells--initially within primordial vesicles.  相似文献   

4.
The source, preparation, and properties of phase-separated systems such as lipid layers, coacervate droplets, sulphobes, and proteinoid microspheres are reviewed. These microsystems are of interest as partial models for the cell and as partial or total models for the protocell. Conceptual benefits from study of such models are: clues to experiments on origins, insights into principles of action and, in some instances, presumable models of the origin of the protocell. The benefits to evolution of organized chemical units are many, and can in part be analyzed. Ease of formation suggests that such units would have arisen early in primordial organic evolution. Integration of these various concepts and the results of consequent experiments have contributed to the developing theory of the origins of primordial and of contemporary life.Invited paper. Presented at the International Seminar Origin of Life, 2–7 August 1974, Moscow, U.S.S.R.  相似文献   

5.
Because gallstones form so frequently in human bile, pathophysiologically relevant supersaturated model biles are commonly employed to study cholesterol crystal formation. We used cryo-transmission electron microscopy, complemented by polarizing light microscopy, to investigate early stages of cholesterol nucleation in model bile. In the system studied, the proposed microscopic sequence involves the evolution of small unilamellar to multilamellar vesicles to lamellar liquid crystals and finally to cholesterol crystals. Small aliquots of a concentrated (total lipid concentration = 29.2 g/dl) model bile containing 8.5% cholesterol, 22.9% egg yolk lecithin, and 68.6% taurocholate (all mole %) were vitrified at 2 min to 20 days after fourfold dilution to induce supersaturation. Mixed micelles together with a category of vesicles denoted primordial, small unilamellar vesicles of two distinct morphologies (sphere/ellipsoid and cylinder/arachoid), large unilamellar vesicles, multilamellar vesicles, and cholesterol monohydrate crystals were imaged. No evidence of aggregation/fusion of small unilamellar vesicles to form multilamellar vesicles was detected. Low numbers of multilamellar vesicles were present, some of which were sufficiently large to be identified as liquid crystals by polarizing light microscopy. Dimensions, surface areas, and volumes of spherical/ellipsoidal and cylindrical/arachoidal vesicles were quantified. Early stages in the separation of vesicles from micelles, referred to as primordial vesicles, were imaged 23-31 min after dilution. Observed structures such as enlarged micelles in primordial vesicle interiors, segments of bilayer, and faceted edges at primordial vesicle peripheries are probably early stages of small unilamellar vesicle assembly. A decrease in the mean surface area of spherical/ellipsoidal vesicles was correlated with the increased production of cholesterol crystals at 10-20 days after supersaturation by dilution, supporting the role of small unilamellar vesicles as key players in cholesterol nucleation and as cholesterol donors to crystals. This is the first visualization of an intermediate structure that has been temporally linked to the development of small unilamellar vesicles in the separation of vesicles from micelles in a model bile and suggests a time-resolved system for further investigation.  相似文献   

6.
H Schwegler  K Tarumi 《Bio Systems》1986,19(4):307-315
The concepts of self-generation, autonomous boundary and self-maintenance are explained briefly. The "protocell" is presented as a model of self-maintenance which is based on simple physical mechanisms of diffusion and reaction. The time evolution of the surface of the protocell is taken into account explicitly in the form of a Stefan condition giving rise to a non-linear feedback of the surface motion to the reaction and diffusion processes inside the protocell. The spatio-temporal dynamics are investigated, particularly in the neighbourhood of the stationary states, showing a self-maintaining behaviour under a certain range of nutritional conditions. Under another set of conditions we find an instability leading to a division process so that the population of protocells becomes self-maintaining instead of the single individual. The presented formulation of the protocell model is crucially improved compared with a previous version which required boundary conditions at infinity. The previous version was not strictly self-maintaining since dynamics outside the cell were essential for its behaviour.  相似文献   

7.
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.  相似文献   

8.
Gánti's chemoton model (Gánti, T., 2002. On the early evolution of biological periodicity. Cell. Biol. Int. 26, 729) is considered as an iconic example of a minimal protocell including three key subsystems: membrane, metabolism and information. The three subsystems are connected through stoichiometrical coupling which ensures the existence of a replication cycle for the chemoton. Our detailed exploration of a version of this model indicates that it displays a wide range of complex dynamics, from regularity to chaos. Here, we report the presence of a very rich set of dynamical patterns potentially displayed by a protocell as described by this implementation of a chemoton-like model. The implications for early cellular evolution and synthesis of artificial cells are discussed.  相似文献   

9.
We have developed an imitation model of the appearance of regulation of physiological functions of protocell at the initial stages of evolution of living system. It is based on suggestion of the appearance of signal function in spontaneously formed products of partial hydrolysis of the protocell polypeptides, based on which there appear the regulatory molecules--quanta of regulation. For construction of the model, the mathematical apparatus of final automats and of genetic algorithm is used. The model has demonstrated the positive role of involvement of regulatory peptides in the system of regulation of protocell functions to provide its viability under the changing envelopment conditions.  相似文献   

10.
Lipid organization and lipid transport processes occurring at the air-water interface of a liposome (lipid vesicle) solution are studied by conventional surface pressure-area measurements and interpreted by an adequate theory. At the interface of a dioleoyl phosphatidylcholine vesicle solution, used for demonstration, a well defined two layer structure selfassembles: vesicles disintegrate at the interface forming a surface-adsorbed lipid monolayer, which prevents further disintegration beyond about 1 dyne/cm surface pressure. A layer of vesicles now assembles in close association with the monolayer. This layer is in vesicle diffusion exchange with the solution and in lipid exchange with the monolayer. The lipid exchange occurs exclusively between the monolayer and the outer lipid layer of the vesicles; it is absent between outer and inner vesicle layers. Equilibration of the lipid density in the monolayer with that in the vesicle outer layer provides a coherent and quantitative explanation of the observed hysteresis effects and equilibrium states. The correspondence between monolayer and vesicle outer layer is traced down to equilibrium constants and rate constants and their dependences on surface pressure, vesicle size and concentration. p] Other alternate realizations of surface structure and exchange, including induced lipid flip-flop within vesicles or vesicle monolayer adhesion or fusion are potential applications of the proposed analysis.  相似文献   

11.
The reproduction of a living cell requires a repeatable set of chemical events to be properly coordinated. Such events define a replication cycle, coupling the growth and shape change of the cell membrane with internal metabolic reactions. Although the logic of such process is determined by potentially simple physico-chemical laws, modelling of a full, self-maintained cell cycle is not trivial. Here we present a novel approach to the problem that makes use of so-called symmetry breaking instabilities as the engine of cell growth and division. It is shown that the process occurs as a consequence of the breaking of spatial symmetry and provides a reliable mechanism of vesicle growth and reproduction. Our model opens the possibility of a synthetic protocell lacking information but displaying self-reproduction under a very simple set of chemical reactions.  相似文献   

12.
The imposing progress in understanding contemporary life forms on Earth and in manipulating them has not been matched by a comparable progress in understanding the origins of life. This paper argues that a crucial problem of unzipping of the double helix molecule of nucleic acid during its replication has been underrated, if not plainly overlooked, in the theories of life's origin and evolution. A model is presented of how evolution may have solved the problem in its early phase. Similar to several previous models, the model envisages the existence of a protocell, in which osmotic disbalance is being created by accumulation of synthetic products resulting in expansion and division of the protocell. Novel in the model is the presence in the protocell of a double-stranded nucleic acid, with each of its two strands being affixed by its 3'-terminus to the opposite sides of the membrane of a protocell. In the course of the protocell expansion, osmotic force is utilized to pull the two strands longitudinally in opposite directions, unzipping the helix and partitioning the strands between the two daughter protocells. The model is also being used as a background for arguments of why life need operate in cycles. Many formal models of life's origin and evolution have not taken into account the fact that logical possibility does not equal thermodynamic feasibility. A system of self-replication has to consist of both replicators and replicants.  相似文献   

13.
Lipid organization and lipid transport processes occurring at the air-water interface of a liposome (lipid vesicle) solution are studied by conventional surface pressure-area measurements and interpreted by an adequate theory. At the interface of a dioleoyl phosphatidylcholine vesicle solution, used for demonstration, a well defined two layer structure selfassembles: vesicles disintegrate at the interface forming a surface-adsorbed lipid monolayer, which prevents further disintegration beyond about 1 dyne/cm surface pressure. A layer of vesicles now assembles in close association with the monolayer. This layer is in vesicle diffusion exchange with the solution and in lipid exchange with the monolayer. The lipid exchange occurs exclusively between the monolayer and the outer lipid layer of the vesicles; it is absent between outer and inner vesicle layers. Equilibration of the lipid density in the monolayer with that in the vesicle outer layer provides a coherent and quantitative explanation of the observed hysteresis effects and equilibrium states. The correspondence between monolayer and vesicle outer layer is traced down to equilibrium constants and rate constants and their dependences on surface pressure, vesicle size and concentration. Other alternate realizations of surface structure and exchange, including induced lipid flip-flop within vesicles or vesicle monolayer adhesion or fusion are potential applications of the proposed analysis.  相似文献   

14.
We have developed an imitation model of the appearance of regulation of physiological functions of protocell at initial stages of evolution of living system. It is based on suggestion of the appearance of signal function in spontaneously formed products of partial hydrolysis of the protocell polypeptides, based on which there appear the regulatory molecules—quanta of regulation. For construction of the model, the mathematical apparatus of final automats and of genetic algorithm is used. The model has demonstrated the positive role of involvement of regulatory peptides in the system of regulation of protocell functions to provide its viability under the changing envelopment conditions.  相似文献   

15.
A model based on quinol phosphates is proposed for the origin of photophosphorylation. This model is divided into three time periods. In the early period, when the primitive earth was under reducing conditions, quinol phosphates were produced through quinol radical intermediates formed by the activation of hydroquinones with ultraviolet light. Phosphorylation of a number of acceptor molecules including inorganic orthophosphate and adenosine diphosphate occurred when quinol phosphate was oxidized by Fe+3 or a water soluble iron-sulfur complex. After the appearance of a rudimentary ozone layer (middle period), ultraviolet light was no longer an important factor in primordial chemistry. Quinol phosphates were then produced by visible light activation of porphyrin-quinone charge transfer complexes. In the presence of light, electrons from H2S, H2 and several reduced organic compounds were transfered through the porphyrin to quinone yielding the quinol radical. Again, quinol phosphate was produced from breakdown of the free radical. Phosphorylation of a number of acceptor molecules was achieved when quinol phosphates were oxidized by the iron-sulfur complexes. Evolutionary pressure to increase the efficiency of these reactions resulted in the electron donor-porphyrin-quinone-iron-sulfur complex becoming more lipophilic and thus associated with the protomembrane of the evolving protocell. In the late period the protomembrane became more sophisticated and quinone was replaced as the primary electron acceptor in the photoprocess by one of the iron-sulfur complexes originally present as oxidizing agents for the quinol phosphates. Quinones eventually lost their role as phosphorylating agents and became only electron and proton shuttles in the evolving electron transport chain. The protocell evolved the ability to use water as the electron donor as the relative roles of iron and quinone in the photoprocess switched.  相似文献   

16.
Liposomes can be considered as a model for a protocell in the context of the origin of life. These self-organising systems can self-reproduce under certain experimental conditions. Herein we demonstrate the ability of another lipid aggregate, micelles, to catalyse a reaction leading finally to the formation of new lipids. In contrast to other published work, where the lipids are products of a hydrolysis reaction, here the lipids are built up from simple precursors. In addition, we observe a transformation of micelles into liposomes.  相似文献   

17.
Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.  相似文献   

18.
Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.The emergence of the first cells on the early Earth was the culmination of a long history of prior chemical and geophysical processes. Although recognizing the many gaps in our knowledge of prebiotic chemistry and the early planetary setting in which life emerged, we will assume for the purpose of this review that the requisite chemical building blocks were available, in appropriate environmental settings. This assumption allows us to focus on the various spontaneous and catalyzed assembly processes that could have led to the formation of primitive membranes and early genetic polymers, their coassembly into membrane-encapsulated nucleic acids, and the chemical and physical processes that allowed for their replication. We will discuss recent progress toward the construction of laboratory models of a protocell (Fig. 1), evaluate the remaining steps that must be achieved before a complete protocell model can be constructed, and consider the prospects for the observation of spontaneous Darwinian evolution in laboratory protocells. Although such laboratory studies may not reflect the specific pathways that led to the origin of life on Earth, they are proving to be invaluable in uncovering surprising and unanticipated physical processes that help us to reconstruct plausible pathways and scenarios for the origin of life.Open in a separate windowFigure 1.A simple protocell model based on a replicating vesicle for compartmentalization, and a replicating genome to encode heritable information. A complex environment provides lipids, nucleotides capable of equilibrating across the membrane bilayer, and sources of energy (left), which leads to subsequent replication of the genetic material and growth of the protocell (middle), and finally protocellular division through physical and chemical processes (right). (Reproduced from Mansy et al. 2008 and reprinted with permission from Nature Publishing ©2008.)The term protocell has been used loosely to refer to primitive cells or to the first cells. Here we will use the term protocell to refer specifically to cell-like structures that are spatially delimited by a growing membrane boundary, and that contain replicating genetic information. A protocell differs from a true cell in that the evolution of genomically encoded advantageous functions has not yet occurred. With a genetic material such as RNA (or perhaps one of many other heteropolymers that could provide both heredity and function) and an appropriate environment, the continued replication of a population of protocells will lead inevitably to the spontaneous emergence of new coded functions by the classical mechanism of evolution through variation and natural selection. Once such genomically encoded and therefore heritable functions have evolved, we would consider the system to be a complete, living biological cell, albeit one much simpler than any modern cell (Szostak et al. 2001).  相似文献   

19.
Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.  相似文献   

20.
Although model protocellular membranes consisting of monoacyl lipids are similar to membranes composed of contemporary diacyl lipids, they differ in at least one important aspect. Model protocellular membranes allow for the passage of polar solutes and thus can potentially support cell-to functions without the aid of transport machinery. The ability to transport polar molecules likely stems from increased lipid dynamics. Selectively permeable vesicle membranes composed of monoacyl lipids allow for many lifelike processes to emerge from a remarkably small set of molecules.Lipid bilayer membranes are an integral component of living cells, providing a permeability barrier that is essential for nutrient transport and energy production. It is reasonable to assume that a similar boundary structure would be required for the origin of cellular life (Szostak et al. 2001). Even though bilayer membranes are a cellular necessity, they also pose a significant obstacle to early cellular functions, the most obvious being that the permeability barrier would inhibit chemical exchange with the environment. Such an exchange is important not only for acquiring nutrient substrates for primitive metabolic processes, but also for the release of inhibitory side-products.Contemporary cells circumvent the permeability problem by incorporating complex transmembrane protein machinery that provides specific transport capabilities. It is unlikely that Earth’s first cells assembled bilayer membranes together with specific membrane protein transporters. Rather, intermediate evolutionary steps must have existed in which simple lipid molecules provided many of the characteristics of contemporary membranes without relying on advanced protein machinery. What seems to have been necessary was the appearance of a simple membrane system capable of retaining and releasing specific molecules. In short, a protocell needed to be selectively permeable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号