首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid have been compared with that of 7 alpha-hydroxy-4-cholesten-3-one in healthy subjects and in patients with an expected decrease or increase of the bile acid production. In controls and patients with liver disease, the level of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was positively correlated to that of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and not to that of 7 alpha-hydroxy-4-cholesten-3-one. In patients with stimulated bile acid formation the levels of the acids were not correlated to each other but there was a significant positive correlation between the levels of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid and 7 alpha-hydroxy-4-cholesten-3-one. These findings indicate that the precursor of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid differs depending on the activity of cholesterol 7 alpha-hydroxylase. Since the activity of this enzyme is reflected by the level of 7 alpha-hydroxy-4-cholesten-3-one in plasma the findings are compatible with a formation of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid from 3 beta,7 alpha-dihydroxy-5-cholestenoic acid when the rate of bile acid formation is normal or reduced and from 7 alpha-hydroxy-4-cholesten-3-one under conditions of increased bile acid synthesis. In support of this interpretation, 7 alpha,26-dihydroxy-4-cholesten-3-one was identified at elevated levels in plasma from patients with ileal resection or treated with cholestyramine. The levels of 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one were also higher than normal in these patients. Based on these findings and previous knowledge, a model is proposed for the biosynthesis of bile acids in man. Under normal conditions, two major pathways, one "neutral" and one "acidic" or "26-oxygenated", lead to the formation of cholic acid and chenodeoxycholic acid, respectively. These pathways are separately regulated. When the activity of cholesterol 7 alpha-hydroxylase is high, the "neutral" pathway is most important whereas the reverse is true when cholesterol 7 alpha-hydroxylase activity is low. In cases with enhanced activity of cholesterol 7 alpha-hydroxylase, the "neutral" pathway is connected to the "acidic" pathway via 7 alpha,26-dihydroxy-4-cholesten-3-one, whereas a flow from the acidic pathway to cholic acid appears to be of minor importance.  相似文献   

2.
Three unconjugated C27 bile acids were found in plasma from healthy humans. They were isolated by liquid-solid extraction and anion-exchange chromatography and were identified by gas-liquid chromatography-mass spectrometry, microchemical reactions, and ultraviolet spectroscopy as 3 beta-hydroxy-5-cholestenoic, 3 beta,7 alpha-dihydroxy-5-cholestenoic, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acids. Their levels often exceeded those of the unconjugated C24 bile acids and the variations between individuals were smaller than for the C24 acids. The concentrations in plasma from 11 healthy subjects were 67.2 +/- 27.9 ng/ml (mean +/- SD) for 3 beta-hydroxy-5-cholestenoic acid, 38.9 +/- 25.6 ng/ml for 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 81.7 +/- 27.9 ng/ml for 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. The levels of the individual acids were positively correlated to each other and not to the levels of the C24 acids. The cholestenoic acids were below the detection limit (20-50 ng/ml) in bile and C27 bile acids present in bile were not detected in plasma.  相似文献   

3.
The concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid were determined in plasma from patients treated with cholestyramine or subjected to resection of the ileum or colon. The values were compared with those for conjugated and unconjugated C24 bile acids. Patients with an intact ileum but without colon had normal levels of cholestenoic acids. Patients treated with cholestyramine or with ileal resection had elevated levels of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid (median values 189 and 233 ng/ml, respectively, compared to 85 ng/ml in controls). The levels of the other two C27 acids were normal in cholestyramine-treated and low in ileoresected patients and were positively correlated to each other but not to the 3-oxo-delta 4 acid. There were no consistent correlations between the levels of C27 acids and those of conjugated or unconjugated C24 bile acids. The results indicate an increased formation of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid in subjects having a stimulated activity of cholesterol 7 alpha-hydroxylase.  相似文献   

4.
The concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid were determined in plasma from patients with different liver diseases and compared with those of unconjugated and conjugated C24 bile acids. The levels of the cholestenoic acids were similar in patients with extrahepatic cholestasis and in controls (median concentration 153 and 162 ng/ml, respectively), whereas significantly elevated levels were found in plasma from patients with primary biliary cirrhosis (median concentration 298 ng/ml) and alcoholic liver cirrhosis (median concentration 262 ng/ml). As expected, conjugated C24 bile acids were elevated in most patients whereas the corresponding unconjugated compounds were low in cholestasis and elevated in alcoholic liver cirrhosis. The levels of the individual C27 acids were usually positively correlated to each other and also to the levels of conjugated C24 bile acids in plasma from patients with liver cirrhosis. In contrast, there was no correlation between the levels of C27 acids and conjugated bile acids in patients with extrahepatic cholestasis. The levels of unconjugated C24 bile acids were not correlated to C27 acids or conjugated bile acids in any of the groups. The results indicate that there is a close metabolic relationship between the individual C27 acids, that they do not participate in an enterohepatic circulation, and that the liver is important for their elimination/metabolism.  相似文献   

5.
Biosynthetic pathways to bile acids have been studied in HepG2 cells, a well-differentiated human hepatoblastoma cell line. Cholesterol metabolites, in total 29, were isolated from culture media and cells by liquid-solid extraction and anion-exchange chromatography and were identified by gas-liquid chromatography-mass spectrometry. The production rates/concentrations of cholic acid (CA) and chenodeoxycholic acid (CDCA) in media from control cells were 71 and 74 ng/10(7) cells/h, respectively. Major bile acid precursors were 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA), 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholestenoic acid, 7 alpha-hydroxy-3-oxo-4-cholenoic acid, and 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, their concentrations being 60, 30, 23, and 10 ng/10(7) cells/h, respectively. These and nine other isolated intermediates formed essentially complete metabolic sequences from cholesterol to CA and CDCA. The remaining steroids were metabolites of the intermediates or autooxidation products of cholesterol. These findings and the observed effect of dexamethasone on production rates suggest that in HepG2 cells the major biosynthetic pathways to primary bile acids start with 7 alpha-hydroxylation of cholesterol and oxidation to 7 alpha-hydroxy-4-cholesten-3-one followed by hydroxylation at either the 26 or 12 alpha position. CDCA is formed by the sequence of 26-hydroxylation, oxidation, and degradation of the side chain and A-ring reduction. CA is formed by the sequence of 12 alpha-hydroxylation, 26-hydroxylation, oxidation, and degradation of the side chain and reduction of the A-ring. An alternative pathway to CA included A-ring reduction of the intermediate 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholestenoic acid to form THCA prior to side chain cleavage. These pathways are not limited to HepG2 cells but may also be important in humans.  相似文献   

6.
We have previously demonstrated that the rat brain contains three unconjugated bile acids, and chenodeoxycholic acid (CDCA) is the most abundantly present in a tight protein binding form. The ratio of CDCA to the other acids in rat brain tissue was significantly higher than the ratio in the peripheral blood, indicating a contribution from either a specific uptake mechanism or a biosynthetic pathway for CDCA in rat brain. In this study, we have demonstrated the existence of an enzymatic activity that converts 3beta-hydroxy-5-cholenoic acid into CDCA in rat brain tissue. To distinguish marked compounds from endogenous related compounds, 18O-labeled 3beta-hydroxy-5-cholenoic acid, 3beta,7alpha-dihydroxy-5-cholenoic acid, and 7alpha-hydroxy-3-oxo-4-cholenoic acid were synthesized as substrates for in vitro incubation studies. The results clearly suggest that 3beta-hydroxy-5-cholenoic acid was converted to 3beta,7alpha-dihydroxy-5-cholenoic acid by microsomal enzymes. The 7alpha-hydroxy-3-oxo-4-cholenoic acid was produced from 3beta,7alpha-dihydroxy-5-cholenoic acid by the action of microsomal enzymes, and Delta4-3-oxo acid was converted to CDCA by cytosolic enzymes. These findings indicate the presence of an enzymatic activity that converts 3beta-hydroxy-5-cholenoic acid into CDCA in rat brain tissue. Furthermore, this synthetic pathway for CDCA may relate to the function of 24S-hydroxycholesterol, which plays an important role in cholesterol homeostasis in the body.  相似文献   

7.
Recently, we demonstrated a net blood-to-brain passage of the oxysterol 27-hydroxycholesterol corresponding to 4-5 mg/day. As the steady-state levels of this sterol are only 1-2 mug/g brain tissue, we hypothesized that it is metabolized and subsequently eliminated from the brain. To explore this concept, we first measured the capacity of in vitro systems representing the major cell populations found in the brain to metabolize 27-hydroxycholesterol. We show here that 27-hydroxycholesterol is metabolized into the known C(27) steroidal acid 7alpha-hydroxy-3-oxo-4-cholestenoic acid by neuronal cell models only. Using an in vitro model of the blood-brain barrier, we demonstrate that 7alpha-hydroxy-3-oxo-4-cholestenoic acid is efficiently transferred across monolayers of primary brain microvascular endothelial cells. Finally, we measured the concentration of 7alpha-hydroxy-3-oxo-4-cholestenoic acid in plasma from the internal jugular vein and brachial artery of healthy volunteers. Calculation of the arteriovenous concentration difference revealed a significant in vivo flux of this steroid from the brain into the circulation in human. Together, these studies identify a novel metabolic route for the elimination of 27-hydroxylated sterols from the brain. Given the emerging connections between cholesterol and neurodegeneration, this pathway may be of importance for the development of these conditions.  相似文献   

8.
The metabolism of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol (24alpha-ethyl-5-cholestene-3beta,7alpha-diol) has been compared in rat liver subcellular fractions. 7alpha-Hydroxy-beta-sitosterol was shown to be metabolized in the same manner as 7alpha-hydroxycholesterol. Thus, the following C29 metabolites have been identified: 24alpha-ethyl-7alpha-hydroxy-4-cholesten-3-one, 24alpha-ethyl-7alpha,12alpha-dihydroxy-4-cholesten-3-one, 24alpha-ethyl-7alpha-hydroxy-5beta-cholestan-3-one, 24alpha-ethyl-5beta-cholestane-3alpha,7alpha-diol, 24alpha-ethyl-7alpha,12alpha-dihydrozy-5beta-cholestan-3-one, and 24alpha-ethyl-5beta-cholestane-3alha,7alpha,12alpha-triol. The C29 compounds were generally less efficient substrates. The most pronounced difference was noted for the delta4-3-oxosteroid 5beta-reductase. Thus, 7alpha-hydroxy-4-cholesten-3-one was three to four times as efficiently reduced as the C29 analog. The oxidation of the 3beta,7alpha-dihydroxy-delta5-steroid to the 7alpha-hydroxy-delta4-3-oxosteroid, the 12alpha-hydroxylation of the 7alpha-hydroxy-delta4-3-oxosteroid, and the reduction of the 7alpha-hydroxy-5beta-3-oxosteroid to the 3alpha,7alpha-dihydroxy-5beta-steroid occurred in up to two times better yields for the C27 steroids.  相似文献   

9.
The metabolism of cholesterol in isolated intact pig liver mitochondria has been investigated. Six major cholesterol metabolites were identified by gas-liquid chromatography-mass spectrometry, the metabolic end product being 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. Incubations with the synthesized intermediates suggested that the major pathway from cholesterol to this acid proceeds via the sequence of 26-hydroxylation, 7 alpha-hydroxylation, further oxidation of the side chain and oxidation/isomerization in the A-ring. The observed reactions prove that in addition to a sterol 26-hydroxylase, pig liver mitochondria contain significant amounts of a 7 alpha-hydroxylase active on side chain oxygenated 3 beta-hydroxy-delta 5-C27 steroids, an oxidoreductase active in the side chain of 26-hydroxylated steroids and a 3 beta-hydroxy-delta 5 steroid oxidoreductase active on 7 alpha-hydroxylated C27 steroids. Since 7 alpha-hydroxy-3-oxo-4-cholestenoic acid is believed to be an important precursor of chenodeoxycholic acid, this study shows that the first reactions in the biosynthesis of bile acids can be exclusively mitochondrial and thereby bypass microsomal cholesterol 7 alpha-hydroxylase as the rate-limiting enzyme.  相似文献   

10.
1. Using a human hepatoma (Hep G2) cell line that continually synthesizes 3 beta-hydroxy-5-cholenoic acid, lithocholic acid, chenodeoxycholic acid and cholic acid we have determined the metabolism and biological effects of 26-hydroxycholesterol and 7 alpha-hydroxycholesterol. 2. Addition of 26-hydroxycholesterol to the medium (6 microM) downregulated cholesterol and chenodeoxycholic acid synthesis. 3. The predominant metabolite of 26-hydroxycholesterol was 3 beta-hydroxy-5-cholenoic acid. 4. Cholesterol synthesis was not affected by the addition of 7 alpha-hydroxycholesterol (6 and 12 microM). The predominant metabolite of 7 alpha-hydroxycholesterol was chenodeoxycholic acid. 5. In Hep G2 cells 7 alpha-hydroxylation of 26-hydroxycholesterol is not well expressed.  相似文献   

11.
Intravenous administration of 26-hydroxycholesterol to the rabbit with a bile fistula yielded cholic acid in proportions (84 and 86%) not significantly different from that derived from cholesterol. By contrast, the naturally occurring C27 bile acid 3 beta-hydroxy-5-cholestenoic acid yielded not more than 8% cholic acid. Thus initial 26-hydroxylation of cholesterol followed by 7-alpha-hydroxylation can provide sufficient amounts of cholic acid to be considered a quantitatively significant pathway for bile acid synthesis, and in addition it is the only pathway that can be the source of the circulating levels of C24 and C27 monohydroxy bile acids.  相似文献   

12.
Biliary 7 alpha-hydroxy-4-cholesten-3-one (an intermediate in bile acid biosynthesis) may be 7 alpha-dehydroxylated in the gut and further metabolized to cholestanol (Skrede, S., and Bj?rkhem, I. (1982) J. Biol. Chem. 257, 8363-8367). We have now evaluated the quantitative importance of pathway(s) to cholestanol with 7 alpha-hydroxylated C27 steroids as intermediates. After feeding conventionally fed rabbits or rats or germ-free rats with [7 alpha-3H]cholesterol and [4-14C]cholesterol, tissue cholestanol could be isolated with about a 20% lower 3H/14C ratio than present in cholesterol. We conclude that there is a pathway to cholestanol involving 7 alpha-hydroxylated intermediates. Intestinal microorganisms are not essential for this pathway, which accounts for at most 20% of the cholestanol formed in these species. In bile fistula rats, there was also a significant conversion of intraperitoneally injected [7 beta-3H]7 alpha-hydroxycholesterol and [4-14C]7 alpha-hydroxy-4-cholesten-3-one into cholestanol. The enzymes involved in the 7 alpha-hydroxylation/dehydroxylation pathway for the biosynthesis of cholestanol are probably located in the liver. Both 7 alpha-hydroxycholesterol and 7 alpha-hydroxy-4-cholesten-3-one may be intermediates.  相似文献   

13.
Analogs of 7 alpha-hydroxy-4-cholesten-3-one were prepared to ascertain structural features necessary for maximal activity of hepatic microsomal 12 alpha-steroid hydroxylase. Methyl 3 alpha,7 alpha-dihydroxy-5 beta-cholane-24-carboxylate derived from chenodeoxycholic acid was oxidized at C-3 with silver carbonate/Celite. The product was hydrolyzed and dehydrogenated with SeO2 to provide 3-oxo-7 alpha-hydroxy-4-cholene-24-carboxylic acid. 5 beta-Cholestane-3 alpha,7 alpha,25-triol and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol were similarly oxidized at C-3 and dehydrogenated to provide 7 alpha,25-dihydroxy-4-cholesten-3-one and 7 alpha,12 alpha,25-trihydroxy-4-cholesten-3-one, respectively. The products were characterized by thin-layer and gas chromatography, ultraviolet, infrared, proton resonance and mass spectrometry.  相似文献   

14.
The CHCl(3) extract of the bark of Garcinia speciosa contained four 17,14-friedolanostanes and five lanostanes as well as friedelin and common plant constituents. The friedolanostanes were the previously known methyl ester of (24E)-3 alpha,23 alpha-dihydroxy-17,14-friedolanostan-8,14,24-trien-26-oic acid and the methyl esters of three hitherto unknown acids, 3 alpha-hydroxy-16 alpha,23 alpha-epoxy-17,14-friedolanostan-8,14,24-trien-26-oic acid, 3 alpha,23 alpha-dihydroxy-8 alpha,9 alpha-epoxy-17,14-friedolanostan-15-oxo-24-en-26-oic acid and 3 alpha,23 alpha-dihydroxy-17,14-friedolanostan-15-oxo-8(14),24-dien-26-oic acid. New lanostanes were 3 beta,9 alpha-dihydroxylanost-24-en-26-al and the methyl ester of 3 beta-hydroxy-23-oxo-9,16-lanostadien-26-oic acid. Structures were established by analysis of spectroscopic data. In the case of the lanostanes the previously unassigned C-25 stereochemistry was shown to be 25R by X-ray analysis of 3 beta-hydroxy-23-oxo-9,16-lanostadien-26-oic acid. In the case of the friedolanostanes the configuration at C-23 was established as 23R, identical with the absolute configuration at C-23 of mariesiic acids A and B.  相似文献   

15.
The mitochondrial sterol 27-hydroxylase (CYP27A1) is required for degradation of the C27-sterol side chain in bile acid biosynthesis. CYP27A1 seems, however, to have roles beyond this, as illustrated by patients with a deficient sterol 27-hydroxylase due to mutations of the CYP27A1 gene [cerebrotendinous xanthomatosis (CTX)]. These subjects have symptoms ranging from accumulation of bile alcohols and cholestanol to accelerated atherosclerosis and progressive neurologic impairment. The present work describes a detailed investigation on the substrate specificity of recombinant human CYP27A1. In accordance with some previous work with rat liver mitochondria, the activity in general increased with the polarity of the substrate. An obvious example was the finding that cholesterol was 27-hydroxylated more efficiently than cholesterol oleate but less efficiently than cholesterol sulfate. The oxysterols 24S-hydroxycholesterol and 25-hydroxycholesterol were 27-hydroxylated less efficiently than cholesterol, possibly due to steric hindrance. Surprisingly, sterols with a 3-oxo-Delta4 structure were found to be hydroxylated at a much higher rate than the corresponding sterols with a 3beta-hydroxy-Delta5 structure. The rates of hydroxylation of the sterols were: 7alpha-hydroxy-4-cholesten-3-one>4-cholesten-3-one>7alpha-hydroxycholesterol>24-hydroxy-4-cholesten-3-one> cholesterol>25-hydroxy-4-cholesten-3-one>24-hydroxycholesterol>or=25-hydroxycholesterol. The possibility is discussed that the findings may have implications for oxysterol-mediated regulation of gene expression. The very high activity of CYP27A1 towards the cholestanol precursor 4-cholesten-3-one may be of importance in connection with the accumulation of cholestanol in patients with CTX.  相似文献   

16.
Manguro LO  Okwiri SO  Lemmen P 《Phytochemistry》2006,67(24):2641-2650
An investigation of an ethyl acetate extract of Embelia schimperi leaves has led to the isolation of 10 oleanane-type triterpenes characterized as 3beta,16alpha-di-O-acetyl-13beta, 28-epoxyoleanane (1), 3beta-acetyl-16-oxo-13beta, 28-epoxyoleanane (2), 3beta-acetyl-16alpha-hydroxy-13beta, 28-epoxyoleanane (3), 3beta-acetyl-16alpha-hydroxyoleanane-13beta, 28-olide (4), 3beta-acetyl-28-hydroxy-16-oxo-12-oleanene (5), 3beta, 28-di-O-acetyl-16alpha-hydroxy-12-oleanene (6), 3beta-acetyl-11alpha, 28-dihydroxy-16-oxo-12-oleanene (7), 3beta, 11alpha, 16alpha, 28-tetrahydroxy-12-oleanene (8), 3beta-acetyl-16alpha, 28alpha-dihydroxy-13beta, 28-oxydooleanane (9) and 3beta, 28alpha-dihydroxy-16-oxo-13beta, 28-oxydooleanane (10). The known compounds isolated from the same extract included 3beta, 16alpha-dihydroxy-13beta, 28-epoxyoleanane (protoprimulagenin A) (11), 3beta-hydroxy-16-oxo-13beta, 28-epoxyoxyoleanane (aegicerin) (12), 3, 16-dioxo-13beta, 28-epoxyoleanane (embilionone) (13), 3beta, 28-dihydroxy-16-oxo-12-oleanene (schimperinone) (14), taraxerone (15), taraxerol (16) and stigmasterol (17). Structure elucidations were carried out spectroscopically.  相似文献   

17.
A new isotope dilution LC-MS/MS method for assay of 7alpha-hydroxy-4-cholesten-3-one without need for derivatization is described. This method was used in catheterization experiments on healthy fasting volunteers. The levels of this generally used marker for bile acid synthesis were slightly but significantly higher in the hepatic vein than in the brachial artery. In contrast, the levels of the precursor to 7alpha-hydroxy-4 cholesten-3-one, 7alpha-hydroxycholesterol, were the same in the two vessels. It is concluded that there is a net extrahepatic metabolism of 7alpha-hydroxy-4-cholesten-3-one. The similarity and very high correlation between the levels in the two vessels (r=0.97) are consistent with the contention that 7alpha-hydroxy-4-cholesten-3-one is a suitable marker for the activity of the hepatic cholesterol 7alpha-hydroxylase and thus bile acid synthesis.  相似文献   

18.
We previously reported that the 7 alpha-dehydroxylation of cholic acid appears to be carried out by a multi-step pathway in intestinal anaerobic bacteria both in vitro and in vivo. The pathway is hypothesized to involve an initial oxidation of the 3 alpha-hydroxy group and the introduction of a double bond at C4-C5 generating a 3-oxo-4-cholenoic bile acid intermediate. The loss of water generates a 3-oxo-4,6-choldienoic bile acid which is reduced (three steps) yielding deoxycholic acid. We synthesized, in radiolabel, the following putative bile acid intermediates of this pathway 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, 12 alpha-dihydroxy-3-oxo-4,6-choldienoic acid, and 12 alpha-hydroxy-3-oxo-4-cholenoic acid and showed that they could be converted to 3 alpha,12 alpha-dihydroxy-5 beta-cholanoic acid (deoxycholic acid) by whole cells or cell extracts of Eubacterium sp. VPI 12708. During studies of this pathway, we discovered the accumulation of two unidentified bile acid intermediates formed from cholic acid. These bile acids were purified by thin-layer chromatography and identified by gas-liquid chromatography-mass spectrometry as 12 alpha-hydroxy-3-oxo-5 alpha-cholanoic acid and 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic (allo-deoxycholic acid). Allo-deoxycholic acid was formed only in cell extracts prepared from bacteria induced by cholic acid, suggesting that their formation may be a branch of the cholic acid 7 alpha-dehydroxylation pathway in this bacterium.  相似文献   

19.
Cerebrotendinous xanthomatosis (CTX) is a rare, recessively inherited lipid storage disease characterized by a markedly reduced production of chenodeoxycholic acid and an increased formation of 25-hydroxylated bile alcohols and cholestanol. Patients with this disease are known to have mutations in the sterol 27-hydroxylase (Cyp27) gene. However, one study showed that mice with a disrupted Cyp27 gene did not have any CTX-related clinical or biochemical abnormalities. To explore the reason, hepatic cholesterol, cholestanol, and 12 intermediates in bile acid biosynthetic pathways were quantified in 10 Cyp27(-/-) and 7 Cyp27(+/+) mice, two CTX patients (untreated and treated with chenodeoxycholic acid), and four human control subjects by high resolution gas chromatography-mass spectrometry. Mitochondrial 27-hydroxycholesterol and 5beta-cholestane-3alpha,7alpha,12alpha,27-tetrol were virtually absent in both Cyp27(-/-) mice and CTX patients. In Cyp27(-/-) mice, microsomal concentrations of intermediates in the early bile acid biosynthetic pathway (7alpha-hydroxycholesterol, 7alpha-hydroxy-4-cholesten-3-one, 7alpha,12alpha-dihydroxy-4-cholesten-3-one, and 5beta-cholestane-3alpha,7alpha,12alpha-triol), 25-hydroxylated bile alcohols (5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, 5beta-cholestane-3alpha,7alpha,12alpha,23R,25-pentol, and 5beta-cholestane-3alpha,7alpha,12alpha,24R, 25-pentol), and cholestanol were all significantly elevated compared with those in Cyp27(+/+) mice, although the levels were lower than those in untreated CTX patients. The intermediate levels in early bile acid biosynthesis were more elevated in male (16;-86% of CTX) than in female Cyp27(-/-) mice (7-30% of CTX). In contrast, 25-hydroxylated bile alcohol concentrations were not significantly different between male and female Cyp27(-/-) mice and were considerably lower (less than 14%) than those in CTX patients.These results suggest that 1) in Cyp27(-/-) mice, especially in females, classic bile acid biosynthesis via 7alpha-hydroxycholesterol is not stimulated as much as in CTX patients; and 2) formed 25-hydroxylated bile alcohols are more efficiently metabolized in Cyp27(-/-) mice than in CTX patients.  相似文献   

20.
The use of 2-hydroxypropyl-beta-cyclodextrin has made it possible to prepare stable aqueous solutions of cholesterol, 26-hydroxycholesterol, 7 alpha-hydroxycholesterol, and monohydroxy bile acids such as lithocholic and 3 beta-hydroxy-5-cholenoic acids. These solutions are suitable for cell culture studies and for parenteral administration to animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号