首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Electrophysiological studies of H441 human distal airway epithelial cells showed that thapsigargin caused a Ca(2+)-dependent increase in membrane conductance (G(Tot)) and hyperpolarization of membrane potential (V(m)). These effects reflected a rapid rise in cellular K(+) conductance (G(K)) and a slow fall in amiloride-sensitive Na(+) conductance (G(Na)). The increase in G(Tot) was antagonized by Ba(2+), a nonselective K(+) channel blocker, and abolished by clotrimazole, a KCNN4 inhibitor, but unaffected by other selective K(+) channel blockers. Moreover, 1-ethyl-2-benzimidazolinone (1-EBIO), which is known to activate KCNN4, increased G(K) with no effect on G(Na). RT-PCR-based analyses confirmed expression of mRNA encoding KCNN4 and suggested that two related K(+) channels (KCNN1 and KCNMA1) were absent. Subsequent studies showed that 1-EBIO stimulates Na(+) transport in polarized monolayers without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)), suggesting that the activity of KCNN4 might influence the rate of Na(+) absorption by contributing to G(K). Transient expression of KCNN4 cloned from H441 cells conferred a Ca(2+)- and 1-EBIO-sensitive K(+) conductance on Chinese hamster ovary cells, but this channel was inactive when [Ca(2+)](i) was <0.2 microM. Subsequent studies of amiloride-treated H441 cells showed that clotrimazole had no effect on V(m) despite clear depolarizations in response to increased extracellular K(+) concentration ([K(+)](o)). These findings thus indicate that KCNN4 does not contribute to V(m) in unstimulated cells. The present data thus establish that H441 cells express KCNN4 and highlight the importance of G(K) to the control of Na(+) absorption, but, because KCNN4 is quiescent in resting cells, this channel cannot contribute to resting G(K) or influence basal Na(+) absorption.  相似文献   

2.

Aims

NADPH oxidase (NOX) is the primary source of reactive oxygen species (ROS) in vascular smooth muscle cells (SMC) and is proposed to play a key role in redox signaling involved in the pathogenesis of cardiovascular disease. Growth factors and cytokines stimulate coronary SMC (CSMC) phenotypic modulation, proliferation, and migration during atherosclerotic plaque development and restenosis. We previously demonstrated that increased expression and activity of intermediate-conductance Ca2+-activated K+ channels (KCNN4) is necessary for CSMC phenotypic modulation and progression of stenotic lesions. Therefore, the purpose of this study was to determine whether NOX is required for KCNN4 upregulation induced by mitogenic growth factors.

Methods and Results

Dihydroethidium micro-fluorography in porcine CSMCs demonstrated that basic fibroblast growth factor (bFGF) increased superoxide production, which was blocked by the NOX inhibitor apocynin (Apo). Apo also blocked bFGF-induced increases in KCNN4 mRNA levels in both right coronary artery sections and CSMCs. Similarly, immunohistochemistry and whole cell voltage clamp showed bFGF-induced increases in CSMC KCNN4 protein expression and channel activity were abolished by Apo. Treatment with Apo also inhibited bFGF-induced increases in activator protein-1 promoter activity, as measured by luciferase activity assay. qRT-PCR demonstrated porcine coronary smooth muscle expression of NOX1, NOX2, NOX4, and NOX5 isoforms. Knockdown of NOX5 alone prevented both bFGF-induced upregulation of KCNN4 mRNA and CSMC migration.

Conclusions

Our findings provide novel evidence that NOX5-derived ROS increase functional expression of KCNN4 through activator protein-1, providing another potential link between NOX, CSMC phenotypic modulation, and atherosclerosis.  相似文献   

3.
The apical membrane of intestinal epithelia expresses intermediate conductance K+ channel (KCNN4), which provides the driving force for Cl secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl secretion via stimulation of Rap2-phospholipase Cϵ-[Ca2+]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl secretion and apical K+ conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2′-O- methyladenosine 3′,5′-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K+ channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.  相似文献   

4.
The neurotropic virus, herpes simplex type 1 (HSV-1), inhibits the excitability of peripheral mammalian neurons, but the molecular mechanism of this effect has not been identified. Here, we use voltage-clamp measurement of ionic currents and an antibody against sodium channels to show that loss of excitability results from the selective, precipitous, and complete internalization of voltage-activated sodium channel proteins from the plasma membrane of neurons dissociated from rat dorsal root ganglion. The internalization process requires viral protein synthesis but not viral encapsulation, and does not alter the density of voltage-activated calcium or potassium channels. However, internalization is blocked completely when viruses lack the neurovirulence factor, infected cell protein 34.5, or when endocytosis is inhibited with bafilomycin A(1) or chloroquine. Although it has been recognized for many years that viruses cause cell pathology by interfering with signal transduction pathways, this is the first example of viral pathology resulting from selective internalization of an integral membrane protein. In studying the HSV-induced redistribution of sodium channels, we have uncovered a previously unknown pathway for the rapid and dynamic control of excitability in sensory neurons by internalization of sodium channels.  相似文献   

5.
Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance.  相似文献   

6.

Background

The identification of strategies to improve mutant CFTR function remains a key priority in the development of new treatments for cystic fibrosis (CF). Previous studies demonstrated that the K+ channel opener 1-ethyl-2-benzimidazolone (1-EBIO) potentiates CFTR-mediated Cl secretion in cultured cells and mouse colon. However, the effects of 1-EBIO on wild-type and mutant CFTR function in native human colonic tissues remain unknown.

Methods

We studied the effects of 1-EBIO on CFTR-mediated Cl secretion in rectal biopsies from 47 CF patients carrying a wide spectrum of CFTR mutations and 57 age-matched controls. Rectal tissues were mounted in perfused micro-Ussing chambers and the effects of 1-EBIO were compared in control tissues, CF tissues expressing residual CFTR function and CF tissues with no detectable Cl secretion.

Results

Studies in control tissues demonstrate that 1-EBIO activated CFTR-mediated Cl secretion in the absence of cAMP-mediated stimulation and potentiated cAMP-induced Cl secretion by 39.2±6.7% (P<0.001) via activation of basolateral Ca2+-activated and clotrimazole-sensitive KCNN4 K+ channels. In CF specimens, 1-EBIO potentiated cAMP-induced Cl secretion in tissues with residual CFTR function by 44.4±11.5% (P<0.001), but had no effect on tissues lacking CFTR-mediated Clconductance.

Conclusions

We conclude that 1-EBIO potentiates Clsecretion in native CF tissues expressing CFTR mutants with residual Cl channel function by activation of basolateral KCNN4 K+ channels that increase the driving force for luminal Cl exit. This mechanism may augment effects of CFTR correctors and potentiators that increase the number and/or activity of mutant CFTR channels at the cell surface and suggests KCNN4 as a therapeutic target for CF.  相似文献   

7.
ClC proteins are a family of chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell types. The mammalian voltage-gated chloride channel ClC-1 is important for controlling the electrical excitability of skeletal muscle. Reduced excitability of muscle cells during metabolic stress can protect cells from metabolic exhaustion and is thought to be a major factor in fatigue. Here we identify a novel mechanism linking excitability to metabolic state by showing that ClC-1 channels are modulated by ATP. The high concentration of ATP in resting muscle effectively inhibits ClC-1 activity by shifting the voltage gating to more positive potentials. ADP and AMP had similar effects to ATP, but IMP had no effect, indicating that the inhibition of ClC-1 would only be relieved under anaerobic conditions such as intense muscle activity or ischemia, when depleted ATP accumulates as IMP. The resulting increase in ClC-1 activity under these conditions would reduce muscle excitability, thus contributing to fatigue. We show further that the modulation by ATP is mediated by cystathionine beta-synthase-related domains in the cytoplasmic C terminus of ClC-1. This defines a function for these domains as gating-modulatory domains sensitive to intracellular ligands, such as nucleotides, a function that is likely to be conserved in other ClC proteins.  相似文献   

8.
Tsay D  Dudman JT  Siegelbaum SA 《Neuron》2007,56(6):1076-1089
HCN1 hyperpolarization-activated cation channels act as an inhibitory constraint of both spatial learning and synaptic integration and long-term plasticity in the distal dendrites of hippocampal CA1 pyramidal neurons. However, as HCN1 channels provide an excitatory current, the mechanism of their inhibitory action remains unclear. Here we report that HCN1 channels also constrain CA1 distal dendritic Ca2+ spikes, which have been implicated in the induction of LTP at distal excitatory synapses. Our experimental and computational results indicate that HCN1 channels provide both an active shunt conductance that decreases the temporal integration of distal EPSPs and a tonic depolarizing current that increases resting inactivation of T-type and N-type voltage-gated Ca2+ channels, which contribute to the Ca2+ spikes. This dual mechanism may provide a general means by which HCN channels regulate dendritic excitability.  相似文献   

9.
KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity   总被引:12,自引:0,他引:12  
Melman YF  Um SY  Krumerman A  Kagan A  McDonald TV 《Neuron》2004,42(6):927-937
Potassium channels control the resting membrane potential and excitability of biological tissues. Many voltage-gated potassium channels are controlled through interactions with accessory subunits of the KCNE family through mechanisms still not known. Gating of mammalian channel KCNQ1 is dramatically regulated by KCNE subunits. We have found that multiple segments of the channel pore structure bind to the accessory protein KCNE1. The sites that confer KCNE1 binding are necessary for the functional interaction, and all sites must be present in the channel together for proper regulation by the accessory subunit. Specific gating control is localized to a single site of interaction between the ion channel and accessory subunit. Thus, direct physical interaction with the ion channel pore is the basis of KCNE1 regulation of K+ channels.  相似文献   

10.
《Trends in plant science》2023,28(6):673-684
Across phyla, voltage-gated ion channels (VGICs) allow excitability. The vacuolar two-pore channel AtTPC1 from the tiny mustard plant Arabidopsis thaliana has emerged as a paradigm for deciphering the role of voltage and calcium signals in membrane excitation. Among the numerous experimentally determined structures of VGICs, AtTPC1 was the first to be revealed in a closed and resting state, fueling speculation about structural rearrangements during channel activation. Two independent reports on the structure of a partially opened AtTPC1 channel protein have led to working models that offer promising insights into the molecular switches associated with the gating process. We review new structure–function models and also discuss the evolutionary impact of two-pore channels (TPCs) on K+ homeostasis and vacuolar excitability.  相似文献   

11.
Oxytocin is produced by neurons in the paraventricular nucleus (PVN) and the supraoptic nucleus in the hypothalamus. Various ion channels are considered to regulate the excitability of oxytocin neurons and its secretion. A-type currents of voltage-gated potassium channels (Kv channels), generated by Kv4.2/4.3 channels, are known to be involved in the regulation of neuron excitability. However, it is unclear whether the Kv4.2/4.3 channels participate in the regulation of excitability in PVN oxytocin neurons. Here, we investigated the contribution of the Kv4.2/4.3 channels to PVN oxytocin neuron excitability. By using transgenic rat brain slices with the oxytocin-monomeric red fluorescent protein 1 fusion transgene, we examined the excitability of oxytocin neurons by electrophysiological technique. In some oxytocin neurons, the application of Kv4.2/4.3 channel blocker increased firing frequency and membrane potential with extended action potential half-width. Our present study indicates the contribution of Kv4.2/4.3 channels to PVN oxytocin neuron excitability regulation.

Abbreviation: PVN, paraventricular nucleus; Oxt-mRFP1, Oxt-monometric red fluorescent protein 1; PaTx-1, Phrixotoxin-1; TEA, Tetraethylammonium Chloride; TTX, tetrodotoxin; aCSF, artificial cerebrospinal fluid;PBS, phosphate buffered saline 3v, third ventricle.  相似文献   


12.
13.
Low-voltage-activated T-type calcium channels are essential contributors to neuronal physiology where they play complex yet fundamentally important roles in shaping intrinsic excitability of nerve cells and neurotransmission. Aberrant neuronal excitability caused by alteration of T-type channel expression has been linked to a number of neuronal disorders including epilepsy, sleep disturbance, autism, and painful chronic neuropathy. Hence, there is increased interest in identifying the cellular mechanisms and actors that underlie the trafficking of T-type channels in normal and pathological conditions. In the present study, we assessed the ability of Stac adaptor proteins to associate with and modulate surface expression of T-type channels. We report the existence of a Cav3.2/Stac1 molecular complex that relies on the binding of Stac1 to the amino-terminal region of the channel. This interaction potently modulates expression of the channel protein at the cell surface resulting in an increased T-type conductance. Altogether, our data establish Stac1 as an important modulator of T-type channel expression and provide new insights into the molecular mechanisms underlying the trafficking of T-type channels to the plasma membrane.  相似文献   

14.
目的:小电导钙激活钾通道亚型2(SK2)在心房肌功能活动中起重要作用,但是由于其表达密度低,直接进行RT-PCR一步法无法得到该基因(KCNN2)的编码区全长序列,本研究旨在采用Overlapping PCR(重叠PCR)法进行基因全长序列的扩增和表达质粒的构建,探讨其在长片段基因扩增的应用。方法:收集人心房肌标本,采用提取总RNA之后逆转录为cDNA,分三段设计KCNN2基因(AY258141)引物进行分段扩增,同时进行分段测序,然后采用Overlapping PCR得到KCNN2基因编码区全长序列,通过限制性酶切位点定向克隆到表达载体pIRES-hrGFP上。采用酶切法和测序法进行鉴定。结果:三段KCNN2基因扩增产物大小与预测值一致,最后得到的表达质粒测序结果与基因库数据基本一致。结论:成功构建人心房肌SK通道基因表达质粒pIRES-hrGFP-SK2,Overlapping PCR能够很好的用于长片段基因扩增。  相似文献   

15.

Background

Potassium channels have been shown to determine wound healing in different tissues, but their role in intestinal epithelial restitution–the rapid closure of superficial wounds by intestinal epithelial cells (IEC)–remains unclear.

Methods

In this study, the regulation of IEC migration by potassium channel modulation was explored with and without additional epidermal growth factor (EGF) under baseline and interferon-γ (IFN-γ)-pretreated conditions in scratch assays and Boyden chamber assays using the intestinal epithelial cell lines IEC-18 and HT-29. To identify possibly involved subcellular pathways, Western Blot (WB)-analysis of ERK and Akt phosphorylation was conducted and PI3K and ERK inhibitors were used in scratch assays. Furthermore, mRNA-levels of the potassium channel KCNN4 were determined in IEC from patients suffering from inflammatory bowel diseases (IBD).

Results

Inhibition of Ca2+-dependent potassium channels significantly increased intestinal epithelial restitution, which could not be further promoted by additional EGF. In contrast, inhibition of KCNN4 after pretreatment with IFN-γ led to decreased or unaffected migration. This effect was abolished by EGF. Changes in Akt, but not in ERK phosphorylation strongly correlated with these findings and PI3K but not ERK inhibition abrogated the effect of KCNN4 inhibition. Levels of KCNN4 mRNA were higher in samples from IBD patients compared with controls.

Conclusions

Taken together, we demonstrate that inhibition of KCNN4 differentially regulates IEC migration in IFN-γ-pretreated vs. non pretreated conditions. Moreover, our data propose that the PI3K signaling cascade is responsible for this differential regulation. Therefore, we present a cellular model that contributes new aspects to epithelial barrier dysfunction in chronic intestinal inflammation, resulting in propagation of inflammation and symptoms like ulcers or diarrhea.  相似文献   

16.
17.
The electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus are model systems for studying mechanisms of high-frequency motor pattern generation and sensory processing. Voltage-dependent ionic currents, including low-threshold potassium currents, influence excitability of neurons in these circuits and thereby regulate motor output and sensory filtering. Although Kv1-like potassium channels are likely to carry low-threshold potassium currents in electromotor and electrosensory neurons, the distribution of Kv1 alpha subunits in A. leptorhynchus is unknown. In this study, we used immunohistochemistry with six different antibodies raised against specific mammalian Kv1 alpha subunits (Kv1.1-Kv1.6) to characterize the distribution of Kv1-like channels in electromotor and electrosensory structures. Each Kv1 antibody labeled a distinct subset of neurons, fibers, and/or dendrites in electromotor and electrosensory nuclei. Kv1-like immunoreactivity in the electrosensory lateral line lobe (ELL) and pacemaker nucleus are particularly relevant in light of previous studies suggesting that potassium currents carried by Kv1 channels regulate neuronal excitability in these regions. Immunoreactivity of pyramidal cells in the ELL with several Kv1 antibodies is consistent with Kv1 channels carrying low-threshold outward currents that regulate spike waveform in these cells (Fernandez et al., J Neurosci 2005;25:363-371). Similarly, Kv1-like immunoreactivity in the pacemaker nucleus is consistent with a role of Kv1 channels in spontaneous high-frequency firing in pacemaker neurons. Robust Kv1-like immunoreactivity in several other structures, including the dorsal torus semicircularis, tuberous electroreceptors, and the electric organ, indicates that Kv1 channels are broadly expressed and are likely to contribute significantly to generating the electric organ discharge and processing electrosensory inputs.  相似文献   

18.
19.
Skeletal muscle fibers exhibit a high resting chloride conductance primarily determined by ClC-1 chloride channels that stabilize the resting membrane potential during repetitive stimulation. Although the importance of ClC-1 channel activity in maintaining normal muscle excitability is well appreciated, the subcellular location of this conductance remains highly controversial. Using a three-pronged multidisciplinary approach, we determined the location of functional ClC-1 channels in adult mouse skeletal muscle. First, formamide-induced detubulation of single flexor digitorum brevis (FDB) muscle fibers from 15-16-day-old mice did not significantly alter macroscopic ClC-1 current magnitude (at -140 mV; -39.0 +/- 4.5 and -42.3 +/- 5.0 nA, respectively), deactivation kinetics, or voltage dependence of channel activation (V(1/2) was -61.0 +/- 1.7 and -64.5 +/- 2.8 mV; k was 20.5 ± 0.8 and 22.8 +/- 1.2 mV, respectively), despite a 33% reduction in cell capacitance (from 465 +/- 36 to 312 +/- 23 pF). In paired whole cell voltage clamp experiments, where ClC-1 activity was measured before and after detubulation in the same fiber, no reduction in ClC-1 activity was observed, despite an approximately 40 and 60% reduction in membrane capacitance in FDB fibers from 15-16-day-old and adult mice, respectively. Second, using immunofluorescence and confocal microscopy, native ClC-1 channels in adult mouse FDB fibers were localized within the sarcolemma, 90 degrees out of phase with double rows of dihydropyridine receptor immunostaining of the T-tubule system. Third, adenoviral-mediated expression of green fluorescent protein-tagged ClC-1 channels in adult skeletal muscle of a mouse model of myotonic dystrophy type 1 resulted in a significant reduction in myotonia and localization of channels to the sarcolemma. Collectively, these results demonstrate that the majority of functional ClC-1 channels localize to the sarcolemma and provide essential insight into the basis of myofiber excitability in normal and diseased skeletal muscle.  相似文献   

20.
Voltage-gated Kv1 channels are key factors regulating excitability in the mammalian central nervous system. Diverse posttranslational regulatory mechanisms operate to determine the density, subunit composition, and localization of Kv1 channel complexes in the neuronal plasma membrane. In this study, we investigated the role of the endoplasmic reticulum chaperone calnexin in the intracellular trafficking of Kv1 channels. We found that coexpressing calnexin with the Kv1.2alpha subunit in transfected mammalian COS-1 cells produced a dramatic dose-dependent increase in cell surface Kv1.2 channel complexes. In calnexin-transfected COS-1 cells, the proportion of Kv1.2 channels with mature N-linked oligosaccharide chains was comparable to that observed in neurons. In contrast, calnexin coexpression exerted no effects on trafficking of the intracellularly retained Kv1.1 or Kv1.6alpha subunits. We also found that calnexin and auxiliary Kvbeta2 subunit coexpression was epistatic, suggesting that they share a common pathway for promoting Kv1.2 channel surface expression. These results provide yet another component in the elaborate repertoire of determinants regulating the density of Kv1 channels in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号