首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Farach-Carson MC 《Steroids》2001,66(3-5):357-361
1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] treatment of osteoblastic cells elicits a series of measurable responses that include both rapid, membrane-initiated effects and longer-term nuclear receptor-mediated effects. Structural analogs have been identified and characterized that selectively activate subsets of these pathways. Two analogs from over 35 that have been tested were chosen for this comparison because they activate non-overlapping response pathways, presumably representing either membrane-initiated or nuclear receptor-initiated activities. Compound AT [25(OH)-16ene-23yne-D(3)] lacks the 1-hydroxyl essential for interacting with the nuclear receptor, but triggers Ca(2+) influx through plasma membrane Ca(2+) channels, augments parathyroid hormone (PTH)-induced Ca(2+) signals, dephosphorylates the matrix protein osteopontin (OPN), and along with PTH stimulates release of calcium from calvaria in organ culture. Compound BT [1alpha,24(OH)(2)-22ene-24cyclopropyl-D(3)] does not elicit any of the rapid responses or enhance PTH-induced bone resorption, but binds to the nuclear receptor for 1alpha,25(OH)(2)D(3) and increases steady state mRNA levels of both OPN and osteocalcin over a 48 h period. Together, these two analogs recapitulate all of the known actions of 1alpha,25(OH)(2)D(3) on osteoblasts. Based on these findings, we conclude that Ca(2+) release from bone stimulated by 1alpha,25(OH)(2)D(3) and PTH is related to the rapid, membrane-initiated actions and is not likely to involve binding to the nuclear receptor for 1alpha,25(OH)(2)D(3). Longer term stimulation of bone formation by 1alpha,25(OH)(2)D(3), however, appears to involve solely the nuclear receptor-mediated effects. These findings support our model of 1alpha,25(OH)(2)D(3) as a coupling factor for bone resorption and formation during bone remodeling.  相似文献   

2.
3.
The secosteroid hormone 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is metabolized in its target tissues through modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the main side chain modification pathway is initiated by hydroxylation at C-24 of the side chain and leads to the formation of the end product, calcitroic acid. The C-23 and C-26 oxidation pathways, the minor side chain modification pathways are initiated by hydroxylations at C-23 and C-26 of the side chain and lead to the formation of the end product, calcitriol lactone. The C-3 epimerization pathway, the newly discovered A-ring modification pathway is initiated by epimerization of the hydroxyl group at C-3 of the A-ring to form 1alpha,25(OH)(2)-3-epi-D(3). A rational design for the synthesis of potent analogs of 1alpha,25(OH)(2)D(3) is developed based on the knowledge of the various metabolic pathways of 1alpha,25(OH)(2)D(3). Structural modifications around the C-20 position, such as C-20 epimerization or introduction of the 16-double bond affect the configuration of the side chain. This results in the arrest of the C-24 hydroxylation initiated cascade of side chain modifications at the C-24 oxo stage, thus producing the stable C-24 oxo metabolites which are as active as their parent analogs. To prevent C-23 and C-24 hydroxylations, cis or trans double bonds, or a triple bond are incorporated in between C-23 and C-24. To prevent C-26 hydroxylation, the hydrogens on these carbons are replaced with fluorines. Furthermore, testing the metabolic fate of the various analogs with modifications of the A-ring, it was found that the rate of C-3 epimerization of 5,6-trans or 19-nor analogs is decreased to a significant extent. Assembly of all these protective structural modifications in single molecules has then produced the most active vitamin D(3) analogs 1alpha,25(OH)(2)-16,23-E-diene-26,27-hexafluoro-19-nor-D(3) (Ro 25-9022), 1alpha,25(OH)(2)-16,23-Z-diene-26,27-hexafluoro-19-nor-D(3) (Ro 26-2198), and 1alpha,25(OH)(2)-16-ene-23-yne-26,27-hexafluoro-19-nor-D(3) (Ro 25-6760), as indicated by their antiproliferative activities.  相似文献   

4.
Vitamin D compounds added to the culture medium induce HL-60 cells to differentiate into macrophage/monocytes via a receptor mechanism. This system provides a biologically relevant assay for the study of biopotency of vitamin D analogs. Using this system, the biological activity of various fluorinated derivatives of vitamin D3 was compared with that of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). As assessed by cell morphology, nitroblue tetrazolium reduction and nonspecific esterase activity, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3) and 26,26,26,27,27,27-hexafluoro-1,24-dihydroxyvitamin D3 (26,27-F6-1,24-(OH)2D3) were about 10 times as potent as 1,25-(OH)2D3 in suppressing HL-60 cell proliferation and inducing cell differentiation. The biological activity of 26,26,26,27,27,27-hexafluoro-1-hydroxyvitamin D3 (26,27-F6-1-OH-D3) was equal to that of 1,25-(OH)2D3 in this system. 1,25-(OH)2D3 and its fluorinated analogs exerted their effects on HL-60 cells in a dose-dependent manner. HL-60 cells have a specific receptor for 1,25-(OH)2D3 with an apparent Kd of 0.25 nM, identical with that of chick intestinal receptor. While the binding affinities of 26,27-F6-1,25-(OH)2D3 and 26,27-F6-1,24-(OH)2D3 for chick intestinal receptor were lower than that of 1,25-(OH)2D3 by factors of 3 and 1.5, respectively, they were as competent as 1,25-(OH)2D3 in binding to HL-60 cell receptor. The ability of 26,27-F6-1-OH-D3 to compete for receptor protein from HL-60 cells and chick intestine was about 1/70 that of 1,25-(OH)2D3. These results indicate that trifluorination of carbons 26 and 27 of vitamin D3 can markedly enhance the effect on HL-60 cells.  相似文献   

5.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is known to be involved in regulating the proliferation of parathyroid cells and PTH synthesis through reactions involving its nuclear receptor. We evaluated the effects of 1,25-(OH)2D3 and its hexafluorinated analog, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3), on parathyroid cells. The 1,25-(OH)2D3 and 26,27-F6-1,25-(OH)2D3 each inhibited [3H]thymidine incorporation and ornithine decarboxylase (ODC) activity, which is important in cell proliferation, in primary cultured bovine parathyroid cells. The inhibitory effect of 26,27-F6-1,25-(OH)2D3 on PTH secretion from parathyroid cells was significantly more potent than that of 1,25-(OH)2D 3 between 10−11 M and 10−8 M. Study of 26,27-F6-1,25-(OH)2D3 metabolism in parathyroid cells in vitro elucidated its slower degradation than that of 1,25-(OH)2D3. After 48 h of incubation with [1β-3H]26,27-F6-1,25-(OH)2D3, two HPLC peaks, one for [1β-3H]26,27-F6-1,25-(OH)2D3, and a second larger peak for [1β-3H]26,27-F6-1,23(S),25-(OH)3D3, were detected. No metabolites were detected after the same period of incubation with 1,25-(OH)2[26,27-3H]D3. We observed that 26,27-F6-1,23(S),25-(OH)3D3 was as potent as 1,25-(OH)2D3 in inhibiting the proliferation of parathyroid cells.

Data suggest that the greater biological activity of 26,27-F6-1,25-(OH)2D3 is explained by its slower metabolisms and by the retention of the biological potency of 26,27-F6-1,25-(OH)2D3 even after 23(S)-hydroxylation.  相似文献   


6.
7.
We show that the immunosuppressive effects of 1alpha, 25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) are due, in part, to inhibition of the T cell stimulatory functions of dendritic cells (DCs). Addition of 10(-12) and 10(-8) M 1alpha,25(OH)(2)D(3) to murine DC cultures resulted in a concentration-dependent reduction in levels of class II MHC and the co-stimulatory ligands B7-1, B7-2, and CD40 without affecting the number of DCs generated. Higher concentrations of 1alpha,25(OH)(2)D(3) reduced DC yield. The capacity of DCs to induce proliferation of purified allogeneic T cells was reduced by 1alpha,25(OH)(2)D(3). The vitamin D(3) analog, 1alpha,25(OH)(2)-16-ene-23-yne-26,27-hexafluoro-19-nor -D(3), exerted identical effects at 100-fold lower concentrations. Inhibition of DC maturation and stimulatory function was absent in cultures from mice genetically lacking vitamin D receptors (VDR). Vitamin D analogs effectively reduce DC function via VDR-dependent pathways.  相似文献   

8.
Proliferation of the non-malignant breast epithelial cell line, MCF-12A, is sensitively and completely inhibited by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) (ED90 = 70 nM), We used real time RT-PCR to demonstrate that the relative resistance to 1alpha,25(OH)(2)D(3) of MDA-MB-231 cells (ED50 > 100 nM) correlated with significantly reduced Vitamin D receptor (VDR) and increased NCoR1 nuclear receptor co-repressor mRNA (0.1-fold reduction in VDR and 1.7-fold increase in NCoR1 relative to MCF-12A (P < 0.05)). This molecular lesion can be targeted by co-treating cells with 1alpha,25(OH)(2)D(3) or potent analogs and the histone deacetylation inhibitor trichostatin A (TSA). For example, the co-treatment of 1,25-dihydroxy-16,23,Z-diene-26,27-hexafluoro-19-nor Vitamin D(3) (RO-26-2198) (100 nM) plus TSA results in strong additive antiproliferative effects in MDA-MB-231 cells. This may represent novel chemotherapeutic regime for hormone insensitive breast cancer.  相似文献   

9.
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone implicated in the pathogenesis of several hypophosphatemic disorders. FGF23 causes hypophosphatemia by decreasing the expression of sodium phosphate cotransporters (NaPi-2a and NaPi-2c) and decreasing serum 1,25(OH)(2)Vitamin D(3) levels. We previously showed that FGFR1 is the predominant receptor for the hypophosphatemic actions of FGF23 by decreasing renal NaPi-2a and 2c expression while the receptors regulating 1,25(OH)(2)Vitamin D(3) levels remained elusive. To determine the FGFRs regulating 1,25(OH)(2)Vitamin D(3) levels, we studied FGFR3(-/-)FGFR4(-/-) mice as these mice have shortened life span and are growth retarded similar to FGF23(-/-) and Klotho(-/-) mice. Baseline serum 1,25(OH)(2)Vitamin D(3) levels were elevated in the FGFR3(-/-)FGFR4(-/-) mice compared with wild-type mice (102.2 ± 14.8 vs. 266.0 ± 34.0 pmol/l; P = 0.001) as were the serum levels of FGF23. Administration of recombinant FGF23 had no effect on serum 1,25(OH)(2)Vitamin D(3) in the FGFR3(-/-)FGFR4(-/-) mice (173.4 ± 32.7 vs. 219.7 ± 56.5 pmol/l; vehicle vs. FGF23) while it reduced serum 1,25(OH)(2)Vitamin D(3) levels in wild-type mice. Administration of FGF23 to FGFR3(-/-)FGFR4(-/-) mice resulted in a decrease in serum parathyroid hormone (PTH) levels and an increase in serum phosphorus levels mediated by increased renal phosphate reabsorption. These data indicate that FGFR3 and 4 are the receptors that regulate serum 1,25(OH)(2)Vitamin D(3) levels in response to FGF23. In addition, when 1,25(OH)(2)Vitamin D(3) levels are not affected by FGF23, as in FGFR3(-/-)FGFR4(-/-) mice, a reduction in PTH can override the effects of FGF23 on renal phosphate transport.  相似文献   

10.
Many efforts have been made to obtain active and less toxic Vitamin D analogs for new clinical applications. The results of previous studies demonstrated the efficacy and safety of topical treatment of psoriasis with one of these analogs, 1,24-dihydroxyvitamin D(3), tacalcitol (1,24-(OH)(2)D(3)). In the present study, we evaluated the toxicity and antitumor effect of this analog. Lethal toxicity of 1,24-(OH)(2)D(3) after s.c. injection was significantly lower than that of calcitriol. No significant differences were observed in the toxicity of the analogs when administered p.o. Calcium levels in the serum of mice treated with calcitriol were significantly higher (111%) than those in mice treated with 1,24-(OH)(2)D(3) (89%) at 5 day after the first s.c. (10 microg/kg/day) administration in comparison to the control (healthy, untreated animals). Oral administration increased the calcium level by 78% for calcitriol and only to 47% over the control for 1,24-(OH)(2)D(3). Parallel administration of clodronate prevented the calcitriol- and 1,24-(OH)(2)D(3)-induced lethal toxicity and also prevented increase in calcium levels. Single therapy with calcitriol did not affect tumor growth in the 16/C mouse mammary cancer model. In contrary, 1,24-(OH)(2)D(3) alone reduced tumor volume to 41% of control. Cisplatin alone did not affect growth of 16/C tumor in these conditions. The growth of tumors in the presence of cisplatin was inhibited by 1,24-(OH)(2)D(3) but not by calcitriol. Interestingly, the inhibition of tumor growth in cisplatin-treated mice by 1,24-(OH)(2)D(3) was greater, than that observed in mice treated with this analog alone. In conclusion, 1,24-(OH)(2)D(3) revealed higher antitumor and lower calcemic activity and toxicity than calcitriol. Application of biphosphonates along with Vitamin D analogs is sufficient to overcome the calcemic and toxic side effects of the proposed treatment.  相似文献   

11.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is known to be involved in regulating the proliferation of parathyroid cells and PTH synthesis through reactions involving its nuclear receptor. We evaluated the effects of 1,25-(OH)2D3 and its hexafluorinated analog, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3), on parathyroid cells. The 1,25-(OH)2D3 and 26,27-F6-1,25-(OH)2D3 each inhibited [3H]thymidine incorporation and ornithine decarboxylase (ODC) activity, which is important in cell proliferation, in primary cultured bovine parathyroid cells. The inhibitory effect of 26,27-F6-1,25-(OH)2D3 on PTH secretion from parathyroid cells was significantly more potent than that of 1,25-(OH)2D 3 between 10−11 M and 10−8 M. Study of 26,27-F6-1,25-(OH)2D3 metabolism in parathyroid cells in vitro elucidated its slower degradation than that of 1,25-(OH)2D3. After 48 h of incubation with [1β-3H]26,27-F6-1,25-(OH)2D3, two HPLC peaks, one for [1β-3H]26,27-F6-1,25-(OH)2D3, and a second larger peak for [1β-3H]26,27-F6-1,23(S),25-(OH)3D3, were detected. No metabolites were detected after the same period of incubation with 1,25-(OH)2[26,27-3H]D3. We observed that 26,27-F6-1,23(S),25-(OH)3D3 was as potent as 1,25-(OH)2D3 in inhibiting the proliferation of parathyroid cells.Data suggest that the greater biological activity of 26,27-F6-1,25-(OH)2D3 is explained by its slower metabolisms and by the retention of the biological potency of 26,27-F6-1,25-(OH)2D3 even after 23(S)-hydroxylation.  相似文献   

12.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is anti-apoptotic in human keratinocytes, melanocytes and fibroblasts after ultraviolet (UV)-exposure. To date, there is no published data on the effects of 1,25(OH)(2)D(3) or its analogs on DNA damage in irradiated skin cells. In these skin cells, 24h pre-treatment with 1,25(OH)(2)D(3) dose-dependently (10(-12) to 10(-8)M) decreased CPD damage by up to 60%. This photoprotective effect was also seen if the 1,25(OH)(2)D(3) was added immediately after irradiation and was mimicked by QW-1624F2-2 (QW), a low-calcemic 1beta-hydroxymethyl-3-epi-16-ene-24,24-difluoro-26,27-bis homo hybrid analog. The well-studied low calcemic, rapid acting agonist analogs 1alpha,25(OH)(2)lumisterol(3) (JN) and 1alpha,25(OH)(2)-7-dehydrocholesterol (JM) also protected skin cells from UV-induced cell loss and CPD damage to an extent comparable with that of 1,25(OH)(2)D(3). In contrast, the rapid response antagonist analog 1beta,25(OH)(2)D(3) (HL) completely abolished the photoprotective effects (reduced cell loss and reduced CPD damage) produced by treatment with 1,25(OH)(2)D(3), JN, JM and QW. Evidence for involvement of the nitric oxide pathway in the protection from CPD damage by 1,25(OH)(2)D(3) was obtained. These data provide further evidence for a role of the vitamin D pathway in the intrinsic skin defenses against UV damage. The data also support the hypothesis that the photoprotective effects of 1,25(OH)(2)D(3) are mediated via the rapid response pathway(s).  相似文献   

13.
1,25(OH)(2)-Vitamin D(3) [1,25(OH)(2)D(3)], PTH and 17beta-estradiol increase intracellular Ca(2+) levels ([Ca(2+)](i)) in rat enterocytes by stimulating inner Ca(2+) store mobilization and voltage-dependent Ca(2+) channels through non-genomic activation of second-messenger cascades. The participation of store-operated Ca(2+) (SOC) channels in 17beta-estradiol regulation of enterocyte [Ca(2+)](i) has also been suggested. The aim of this work was to investigate whether PTH and/or 17beta-estradiol exert additive or synergistic effects acting in concert with the classic intestinal calciotropic hormone 1,25(OH)(2)D(3). Fura-2-loaded rat duodenal cells were stimulated using rPTH (10 nM), 17beta-estradiol (0.1 nM) or 1,25(OH)(2)D(3) (0.1 nM). The resulting Ca(2+) signal was characterized by an almost immediate rise in [Ca(2+)](i) (within 30 s) rapidly reaching peak levels, followed by a plateau phase that remained sustained as long as the cells were exposed to the stimulus. The addition of PTH at the sustained phase induced by 1,25(OH)(2)D(3) or, conversely, the addition of the secosteroid after the PTH-induced effect, did not induce additional increases in [Ca(2+)](i). Simultaneous treatment with both hormones resulted in an elevation of [Ca(2+)](i) equivalent to the maximal level caused by either agonist alone, suggesting common components for [Ca(2+)]i stimulation by PTH and 1,25(OH)(2)D(3). Treatment with 17beta-estradiol at the sustained phase induced by 1,25(OH)(2)D(3) or, conversely, treatment with the secosteroid after the 17beta-estradiol effect, induced additional increments in [Ca(2+)](i) (58 % and 63 %, respectively). Simultaneous treatment of enterocytes with both steroids potentiated their individual effects to the same extent as when added sequentially, also indicative of additive actions mediated by different sources of calcium signaling cascades. Moreover, 17beta-estradiol failed to further increase the 1,25(OH)(2)D(3)-induced initial Ca(2+) elevation in Ca(2+)-free medium, thus suggesting that extracellular influx mechanisms rather than intracellular Ca(2+) mobilization account for estrogen potentiation of 1,25(OH)(2)D(3) modulation of [Ca(2+)](i) in duodenal cells.  相似文献   

14.
15.
The effects of hormonal modulators of osteoblast function, parathyroid hormone, 1,25(OH)(2)D(3) and prostaglandins on [Ca(2+)](i) in periosteal-derived osteoblasts from rat femurs have been investigated. Our results show that application of parathyroid hormone PTH (10(-5) M) and prostaglandin E(2) (PGE(2)) (4 microM) result in a rapid heterogeneous elevation in [Ca(2+)](i) that, in the case of PTH, is dependent on both extracellular and intracellular sources of calcium. Variable responses to treatments have been found within populations of cells. The PGE(2) response is dose dependent. Treatment with 1,25(OH)(2)D(3) (10(-8) M) induces a brief (60-90 sec) elevation in [Ca(2+)](i) that is almost totally abolished in EGTA-buffered Ca(2+)-free medium. Interactive effects of multiple hormone treatments have been observed. Pretreatment with 1,25(OH)(2)D(3) results in near-total inhibition of the PTH and PGE(2) responses. In conclusion, modulation of [Ca(2+)](i) appears to play a role not only in the direct effects of osteotropic hormones on osteoblasts but also in the synergistic and antagonistic effects between circulating hormones.  相似文献   

16.
Monocytic differentiation-inducing activity of 26,26,26,27,27,27-hexafluoro-1 alpha,25-dihydroxyvitamin D3 [26,27-F6-1 alpha,25-(OH)2D3] was re-evaluated in human promyelocytic leukemia (HL-60) cells in serum-supplemented or serum-free culture. The order of in vitro potency for reducing nitroblue tetrazolium (NBT) was 26,27-F6-1 alpha,25-(OH)2D3 greater than 1 alpha, 25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] = 26,26,26,27,27,27-F6-1 alpha,23(S), 25-trihydroxyvitamin D3 [26,27-F6-1 alpha,23(S), 25-(OH)3D3] under serum-supplemented culture conditions, whereas the order was 1 alpha, 25-(OH)2D3 = 26,27-F6-1 alpha,25-(OH)2D3 greater than 26,27-F6-1 alpha,23(S), 25-(OH)3D3 under serum-free culture conditions. This rank order for differentiation-inducing activity under serum-free culture conditions correlated well with the binding affinity of these analogs for vitamin D3 receptor of HL-60 cells. The order of relative % binding affinity for the vitamin D-binding protein in fetal calf serum was 1 alpha,25-(OH)2D3 (100%) much greater than 26,27-F6-1 alpha,25-(OH)2D3 (5.1%) greater than 26,27-F6-1 alpha,23(S), 25-(OH)3D3 (less than 1%). These results suggest that serum vitamin D-binding proteins apparently modulate monocytic differentiation of HL-60 cells by 26,27-F6-1 alpha,25-(OH)2D3 under serum-supplemented culture conditions.  相似文献   

17.
Nishii Y  Okano T 《Steroids》2001,66(3-5):137-146
In 1981 Suda and his colleagues first reported the new activity of calcitriol namely its ability to differentiate the myeloid leukemia cells into normal monocytes-macrophages. However, the possibility of using calcitriol as an antileukemic drug was not feasible because of its potent calcemic effects. Based on these observations, several pharmaceutical companies initiated the synthesis of vitamin D analogs with the aim to separate the calcemic actions of calcitriol from its actions on regulating the cell growth and differentiation. As a result, numerous noncalcemic analogs with a potential for the treatment of leukemia and other cancers were synthesized. The group at Chugai introduced two characteristic analogs of opposite type namely, 22-oxacalcitriol (OCT) and 2beta-(3-hydroxypropoxy)calcitriol (ED-71) which have been shown to have therapeutic value and are already being used clinically. The work on OCT and ED-71 together with the work on calcipotriol and KH-1060 by Leo Laboratories, and 1alpha,25(OH)(2)-16-ene-23-yne-D(3) by Hoffmann-La Roche, vigorously stimulated research world-wide in the development of vitamin D analogs into pharmaceutical products. More recently new impressive vitamin D analogs such as 3-epi analogs, 19-nor analogs, 18-nor analogs, 2-methyl-20-epi-calcitriol, non-steroidal vitamin D analogs are being developed. The authors are convinced that various vitamin D analogs will become highly effective therapeutic agents at the clinical level in the new century, and also that a new theory on the mechanism of vitamin D action will be generated.  相似文献   

18.
This study investigates the phosphorus (P) homeostasis in the process of an altered parathyroid hormone (PTH) action in the kidney of rats fed a high P diet. Four-week-old male Wistar strain rats were fed diets containing five different P levels (0.3, 0.6, 0.9, 1.2 and 1.5%) for 21 days. The serum PTH concentration and urinary excretion of P were elevated with increasing dietary P level. Compared to rats fed the 0.3% P diet, the serum calcium (Ca) concentration remained unchanged, while the serum 1,25(OH)(2)D(3) concentration and urinary excretion of cAMP were elevated with increasing dietary P level in rats fed the high P diets containing 0.6-0.9% P. On the other hand, a lower serum Ca concentration was observed in rats fed the high P diets containing 1.2% or greater P. The serum 1,25(OH)(2)D(3) concentration remained unchanged in rats fed the high P diets containing 1.2% or greater P, comparison with rats fed the 0.3% P diet. The urinary excretion of cAMP and PTH/PTH-related peptide (PTHrP) receptor and type II sodium-dependent phosphate transporter (NaPi-2) mRNA in the kidney were both decreased in rats fed the high P diets containing 1.2% or greater P. In conclusion, a high P diet with subsequent decrease in serum Ca concentration suppressed the PTH action in the kidney due to PTH/PTHrP receptor mRNA down-regulation. Furthermore, an increase in the urinary excretion of P might have been caused by decreased NaPi-2 mRNA expression without the effects of PTH and 1,25(OH)(2)D(3).  相似文献   

19.
We examined the effects of 1,25 dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) on the distribution and mobility of the vitamin D receptor (VDR) in the enterocyte-like Caco-2 cell. Confocal microscopy showed that a green fluorescent protein-vitamin D receptor (GFP-VDR) fusion protein is predominantly nuclear (58%) and it does not associate with the apical or basolateral membrane of proliferating or polarized, differentiated cells. In contrast to the previously studied cell types, neither endogenous VDR nor GFP-VDR levels accumulate in the nucleus following 1,25(OH)(2)D(3) treatment (100 nM, 30 min). However, in nuclear photobleaching experiments nuclear GFP-VDR import was significantly increased by 1,25(OH)(2)D(3) during both an early (0-5 min) and later (30-35 min) period (20% per 5 min). Compared to the natural ligand, nuclear import of GFP-VDR was 60% lower in cells treated with the 1,25(OH)(2)D(3) analog, 1-alpha-fluoro-16-ene-20-epi-23-ene-26,27-bishomo-25-hydroxyvitamin D(3) (Ro-26-9228, 5 min, 100 nM). Downstream events like ligand-induced association of VDR with chromatin at 1 h and the accumulation of CYP24 mRNA were significantly lower in Ro-26-9228 treated cells compared to 1,25(OH)(2)D(3) (60 and 95% lower, respectively). Collectively our data are consistent with a role for ligand-induced nuclear VDR import in receptor activation. In addition, ligand-dependent VDR nuclear import appears to be balanced by export, thus accounting for the lack of nuclear VDR accumulation even when VDR import is significantly elevated.  相似文献   

20.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) greatly enhances sodium butyrate (NaB)-induced enterocyte differentiation of HT-29 human colonic carcinoma cells while 1,25-(OH)2D3 alone induces growth restriction without associated differentiation. In the present study, the efficacies of various analogs of 1,25-(OH)2D3 to enhance NaB-induced HT-29 differentiation and to prolong the reversal of the differentiated phenotype under NaB-free growth conditions were subsequently examined. Extent of HT-29 differentiation was assessed by measurement of alkaline phosphatase (AP) activity, appearance of mucin-producing cells, changes in morphological characteristics, and expression of differentiation-associated cytokeratin proteins. Among active analogs of 1,25-(OH)2D3, 26,26,26,27,27,27-hexafluoro-1,25-(OH)2D3 (F6-1,25-(OH)2D3), 24,24-difluoro-24-homo-1,25-(OH)2D3, and 26,27-dimethyl-1,25-(OH)2D3 were 100-, 10-, and 5-fold, respectively, more effective than 1,25-(OH)2D3 in enhancing NaB-induced mucin production. Combined use of NaB and F6-1,25-(OH)2D3 (10(-9) M) also induced HT-29 cells to form highly differentiated goblet-like enterocytes, and increased both cellular AP enzymatic activity and tissue-type cytokeratin content. This differentiated state was qualitatively more advanced than that achieved by a combination of NaB and 10(-7) M 1,25-(OH)2D3. NaB-mediated HT-29 differentiation (in short-term inductions) was found to be reversible following a return to NaB-free medium. HT-29 cells differentiated by combined use of NaB and 1,25-(OH)2D3 or its analogs exhibited a significant prolonged reversal time relative to cells differentiated with NaB alone. The most prominent effect was achieved using cells differentiated with NaB and 10(-9) M F6-1,25-(OH)2D3 which exhibited a 7-fold prolonged reversal time over colonocytes differentiated by NaB alone. Our data suggest that a combined use of NaB and 1,25-(OH)2D3 or its derivatives may provide a convenient in vitro model system to probe molecular events associated with steroid-target tissue interactions in a differentiating cell system as commonly occurs in vivo. Such an analysis might lend itself to design of a rational combination differentiation-based therapy for the clinical management of colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号