首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Morphogen gradients play an important role in pattern formation during early stages of embryonic development in many bilaterians. In an adult hydra, axial patterning processes are constantly active because of the tissue dynamics in the adult. These processes include an organizer region in the head, which continuously produces and transmits two signals that are distributed in gradients down the body column. One signal sets up and maintains the head activation gradient, which is a morphogenetic gradient. This gradient confers the capacity of head formation on tissue of the body column, which takes place during bud formation, hydra''s mode of asexual reproduction, as well as during head regeneration following bisection of the animal anywhere along the body column. The other signal sets up the head inhibition gradient, which prevents head formation, thereby restricting bud formation to the lower part of the body column in an adult hydra. Little is known about the molecular basis of the two gradients. In contrast, the canonical Wnt pathway plays a central role in setting up and maintaining the head organizer.Morphogen gradients play a critical role in the early stages of embryogenesis in a number of metazoans in that they initiate and are involved in axial patterning processes. Such a gradient also plays a role in axial patterning in hydra, a primitive metazoan. However, unlike in most metazoans, this gradient is continuously active in an adult hydra as part of the tissue dynamics of the adult animal.The structure of a hydra is fairly simple (Fig. (Fig.1).1). It consists of a single axis with radial symmetry, which contains a head, body column, and foot along the axis. The head consist of two parts: the hypostome in the apex, and the tentacle zone from which the tentacles emerge in the basal part of the head. The body column has three parts: the gastric region and peduncle in the apical, and basal parts with a budding zone between the gastric region and peduncle. Buds, hydra''s mode of asexual reproduction, emerge from the budding zone between the gastric region and peduncle.Open in a separate windowFigure 1.Longitudinal cross section of an adult hydra. The multiple regions are labeled. The two protrusions from the body column are early and late stages of bud development. The arrows indicate the direction of tissue displacement. (Reprinted from Bode 2001.)Three cell lineages are involved. The axis consists of a cylindrical shell that is made up of two concentric epithelial layers, the ectoderm and endoderm, which are separated by a basement membrane. Interspersed among the epithelial cells of both layers are the cells of the third lineage, the interstitial cell lineage. It consists of interstitial cells, which are multipotent stem cells (David and Murphy 1977), located primarily in the ectoderm throughout the body column. They give rise to neurons, secretory cells, and nematocytes, which are the stinging cells that are typical of cnidarians, as well as gametes when a hydra undergoes sexual reproduction (David and Murphy 1977).In an adult hydra, the epithelial cells of both layers are constantly in the mitotic cycle (David and Campbell 1972; Campbell and David 1974). The expanding tissue in the upper part of the body column is continuously displaced apically into the head (Fig. 1). Once there, it is displaced onto and along the tentacles or into the hypostome, and eventually sloughed when reaching the extremities (Campbell 1967; Otto and Campbell 1977). Tissue in the remainder of the body column is displaced basally either onto developing buds, or further down onto the foot, where it is sloughed at the bottom of the foot. Thus, the tissues of an adult hydra are continuously in a steady state of production and loss. As a hydra has no defined lifetime (Martinez 1998), this activity goes on indefinitely.  相似文献   

4.
5.
Axial patterning of the aboral end of the hydra body column was examined using expression data from two genes. One, shin guard, is a novel receptor protein-tyrosine kinase gene expressed in the ectoderm of the peduncle, the end of the body column adjacent to the basal disk. The other gene, manacle, is a paired-like homeobox gene expressed in differentiating basal disk ectoderm. During regeneration of the aboral end, expression of manacle precedes that of shin guard. This result is consistent with a requirement for induction of peduncle tissue by basal disk tissue. Our data contrast with data on regeneration of the oral end. During oral end regeneration, markers for tissue of the tentacles, which lie below the extreme oral end (the hypostome), are detected first. Later, markers for the hypostome itself appear at the regenerating tip, with tentacle markers displaced to the region below. Additional evidence that tissue can form basal disk without passing through a stage as peduncle tissue comes from LiCl-induced formation of patches of ectopic basal disk tissue. While manacle is ectopically expressed during formation of basal disk patches, shin guard is not. The genes examined also provide new information on development of the aboral end in buds. Although adult hydra are radially symmetrical, expression of both genes in the bud's aboral end is initially asymmetrical, appearing first on the side of the bud closest to the parent's basal disk. The asymmetry can be explained by differences in positional information in the body column tissue that evaginates to form a bud. As predicted by this hypothesis, grafts reversing the orientation of evaginating body column tissue also reverse the orientation of asymmetrical gene expression.  相似文献   

6.
The Cnidarian, hydra, is an appealing model system for studying the basic processes underlying pattern formation. Classical studies have elucidated much basic information regarding the role of development gradients, and theoretical models have been quite successful at describing experimental results. However, most experiments and computer simulations have dealt with isolated patterning events such as the dynamics of head regeneration. More global events such as interactions among the head, bud, and foot patterning systems have not been extensively addressed. The characterization of monoclonal antibodies with position-specific labeling patterns and the recent cloning and characterization of genes expressed in position-specific manners now provide the tools for investigating global interactions between patterning systems. In particular, changes in the axial positional value gradient may be monitored in response to experimental perturbation. Rather than studying isolated patterning events, this approach allows us to study patterning over the entire animal. The studies reported here focus on interactions between the foot and the head patterning systems in Hydra vulgaris following induction of a foot in close proximity to a head, axial grafting of a foot closer to the head, or doubling the amount of basal tissue by lateral grafting of an additional peduncle-foot onto host animals. Resulting positional value changes as monitored by antigen (TS19) and gene (ks1 and CnNK-2) expression were assessed in the foot, head, and intervening tissue. The results of the experiments indicate that positional values changed rapidly, in a matter of hours, and that there were reciprocal interactions between the foot and the head patterning systems. Theoretical interpretations of the results in the form of computer simulations based on the reaction-diffusion model are presented and predict many, but not all, of the experimental observations. Since the lateral grafting experiment cannot, at present, be simulated, it is discussed in light of what has been learned from the axial grafting experiments and their simulations.  相似文献   

7.
8.
We have developed an assay for a substance from hydra that accelerates foot regeneration in the animal. This substance is specific for the foot as evidenced by the following findings: (1) It is present in the animal as a steep gradient descending from foot to head, paralleling the foot-forming potential of the tissue (2) It does not accelerate head regeneration, nor do the head factors of hydra discovered by Schaller (1973) and Berking (1977) accelerate foot regeneration. We propose that the foot-activating substance is a morphogen responsible for foot formation in hydra. The foot activator can be extracted from hydra tissue with methanol and separated from other known morphogens of hydra by gel filtration and ion-exchange chromatography. A substance with similar biological and physicochemical properties can be isolated from sea anemones.  相似文献   

9.
Developmental gradients are known to play important roles in axial patterning in hydra. Current efforts are directed toward elucidating the molecular basis of these gradients. We report the isolation and characterization of HyAlx, an aristaless-related gene in hydra. The expression patterns of the gene in adult hydra, as well as during bud formation, head regeneration and the formation of ectopic head structures along the body column, indicate the gene plays a role in the specification of tissue for tentacle formation. The use of RNAi provides more direct evidence for this conclusion. The different patterns of HyAlx expression during head regeneration and bud formation also provide support for a recent version of a reaction-diffusion model for axial patterning in hydra.  相似文献   

10.
Summary LiCl in concentrations exceeding 0.5 mM affects morphogenesis in Hydra vulgaris (formerly named H. attenuata) by interfering with the foot-forming system(s). Pulse treatment of Hydra bearing small buds or of animals that develop a bud within 14 h after the end of treatment prevented foot formation at the bud's base in a concentration-dependent manner. With increasing concentrations of Li+ or length of treatment in increasing percentage of the buds remained permanently connected to the parent by a bridge of tissue thus forming a stable secondary axis. Instead of the normal ring-shaped foot a patch of basal disc tissue developed or the bud failed to differentiate foot tissue at all. Long-term culture of animals in 1 mM LiCl inhibited budding from the second day of treatment onwards and detachment of existing buds was delayed. After 4 days of treatment 15%–30% of budless or bud-bearing animals developed up to three patch-like basal discs at various positions along the body axis; these usually grew out one above the other on the same side of the animal but never at the same transverse level. Besides these patch feet broad belts of foot tissue were observed in the lower gastric region. After 1 week of treatment half of the animals developed a constriction located usually in the lower two-thirds of the body axis. The tissue adjacent to this constriction and particularly above it differentiated into mucus-secreting foot tissue. Subsequent separation into two morphologically intact polyps occurred occasionally. When treatment was stopped, budding restarted within the next 3 days at several positions along the body axis whether or not secondary feet or a constriction existed. Buds grew out in different budding zones, which persisted for several days. This burst of budding led to up to 7 buds per animal within 3 days. After about 1 week the animals regulated to normality or became epithelial, i.e. they lost their stem cells during and after treatment.  相似文献   

11.
Foot regeneration in the freshwater hydra Pelmatohydra robusta was examined using a monoclonal antibody AE03 as a marker. This antibody specifically recognizes mucous-producing ectodermal epithelial cells in the basal disk, but not cells in the peduncle region located just above the basal disk in the foot. When the basal disk was removed by amputation at the upper or lower part of the peduncle, AE03-positive (basal disk) cells always appeared at the regenerating tip of the footless polyp approximately 12-16 h later. When a small piece of tissue was cut out from the upper or lower peduncle region, the tissue invariably turned into a smooth spherical or oblong shape within a few hours. AE03 signal appeared in these spheres variably depending on their origin: when tissue pieces were derived from the lower peduncle, the signal appeared in nearly all pieces and often covered the entire surface of the pieces within 24 h. In contrast, the signal appeared in less than 10% of pieces derived from the upper peduncle. Furthermore, the signal seldom covered more than half of the surface of these pieces. When maintained for many days, pieces derived from the upper peduncle often regenerated tentacles, whereas those from the lower peduncle seldom did. These and other observations suggest that epithelial cells in the peduncle can rapidly differentiate into basal disk cells when the basal tissue is removed. However, cells in the upper peduncle are not irreversibly committed to differentiate into basal disk cells because, when cut out as small tissue pieces, they could remain AE03 negative and become tentacle cells. In contrast, the cells in the lower peduncle apparently are irreversibly committed to differentiate into basal disk cells, as they always turned rapidly into AE03-positive cells once they were physically separated from (and freed from the influence of) the basal disk itself, regardless of the separation methods used.  相似文献   

12.
Several members of the newly emerging astacin metalloproteinase family have been shown to function in a variety of biological events, including cell differentiation and morphogenesis during both embryonic development and adult tissue differentiation. We have characterized a new astacin proteinase, hydra metalloproteinase 2 (HMP2) from the Cnidarian, Hydra vulgaris. HMP2 is translated from a single mRNA of 1.7 kb that contains a 1488 bp open reading frame encoding a putative protein product of 496 amino acids. The overall structure of HMP2 most closely resembles that of meprins, a subgroup of astacin metalloproteinases. The presence of a transient signal peptide and a putative prosequence indicates that HMP2 is a secreted protein that requires post-translational processing. The mature HMP2 starts with an astacin proteinase domain that contains a zinc binding motif characteristic of the astacin family. Its COOH terminus is composed of two potential protein-protein interaction domains: an "MAM" domain (named after meprins, A-5 protein and receptor protein tyrosine phosphatase mu) that is only present in meprin-like astacin proteinases; and a unique C-terminal domain (TH domain) that is also present in another hydra metalloproteinase, HMP1, in Podocoryne metalloproteinase 1 (PMP1) of jellyfish and in toxins of sea anemone. The spatial expression pattern of HMP2 was determined by both mRNA whole-mount in situ hybridization and immunofluorescence studies. Both morphological techniques indicated that HMP2 is expressed only by the cells in the endodermal layer of the body column of hydra. While the highest level of HMP2 mRNA expression was observed at the junction between the body column and the foot process, immunofluorescence studies indicated that HMP2 protein was present as far apically as the base of the tentacles. In situ analysis also indicated expression of HMP2 during regeneration of the foot process. To test whether the higher levels of HMP2 mRNA expression at the basal pole related to processes underlying foot morphogenesis, antisense studies were conducted. Using a specialized technique named localized electroporation (LEP), antisense constructs to HMP2 were locally introduced into the endodermal layer of cells at the basal pole of polyps and foot regeneration was initiated and monitored. Treatment with antisense to HMP2 inhibited foot regeneration as compared to mismatch and sense controls. These functional studies in combination with the fact that HMP2 protein was expressed not only at the junction between the body column and the foot process, but also as far apically as the base of the tentacles, suggest that this meprin-class metalloproteinase may be multifunctional in hydra.  相似文献   

13.
目的:如何建立和维持体轴是一个基本的发育生物学问题,而淡水水螅是适合进行形态发生和个体发育调控机制研究的重要模式生物。本文观察了大乳头水螅异常极性体轴的形成及矫正进程,初步探讨水螅极性体轴的维持和调控机制。方法:先切取水螅的整个头部,再获得带二根触手的口区组织。通过ABTS细胞化学染色法检测水螅基盘分子标志物过氧化物酶的表达,判别水螅基盘组织(水螅足区的末端)是否形成。结果:从40块口区组织再生得到的水螅个体中有1例极性体轴发育异常的个体,其身体两端均发育成头区,且两端的头区均具有捕食能力。随后水螅其中一端头区的触手逐渐萎缩、退化,最终该端头区转化成具有吸附能力的基盘组织。结论:水螅组织的再生涉及极性体轴的重建,而一些特殊因素可能造成临时性的水螅极性体轴调控紊乱。本研究表明水螅具备自我矫正异常极性体轴的能力。另外,本研究结果显示水螅触手可以萎缩直至退化,该现象涉及的细胞学过程可能是非常复杂的,有可能涉及到触手细胞的凋亡转化过程,也可能是触手的高度分化细胞仍然具备去分化能力、去分化后再转移到身体其他地方,其具体机制值得进一步探究。  相似文献   

14.
Developmental gradients play a central role in axial patterning in hydra. As part of the effort towards elucidating the molecular basis of these gradients as well as investigating the evolution of the mechanisms underlying axial patterning, genes encoding signaling molecules are under investigation. We report the isolation and characterization of HyBMP5-8b, a BMP5-8 orthologue, from hydra. Processes governing axial patterning are continuously active in adult hydra. Expression patterns of HyBMP5-8b in normal animals and during bud formation, hydra's asexual form of reproduction, were examined. These patterns, coupled with changes in patterns of expression in manipulated tissues during head regeneration, foot regeneration as well as under conditions that alter the positional value gradient indicate that the gene is active in two different processes. The gene plays a role in tentacle formation and in patterning the lower end of the body axis.  相似文献   

15.
In the freshwater coelenterate, hydra, asexual reproduction via budding occurs at the base of the gastric region about two-thirds of the distance from the head to the foot. Developmental gradients of head and foot activation and inhibition originating from these organizing centers have long been assumed to control budding in hydra. Much has been learned over the years about these developmental gradients and axial pattern formation, and in particular, the inhibitory influence of the head on budding is well documented. However, understanding of the role of the foot and potential interactions between the foot, bud, and head patterning systems is lacking. The purpose of this study was to investigate the role of the foot in the initiation of new axis formation during budding by manipulating the foot and monitoring effects on the onset of first bud evagination and the time necessary to reach the 50% budding point. Several experimental situations were examined: the lower peduncle and foot (PF) were injured or removed, a second PF was laterally grafted onto animals either basally (below the budding zone) or apically (above the budding zone), or both the head and PF were removed simultaneously. When the PF was injured or removed, the onset of first bud evagination was delayed and/or the time until the 50% budding point was reached was longer. The effects were more pronounced when the manipulation was performed closer to the anticipated onset of budding. When PF tissue was doubled, precocious bud evagination was induced, regardless of graft location. Removal of the PF at the same time as decapitation reduced the inductive effect of decapitation on bud evagination. These results are discussed in light of potential signals from the foot or interactions between the foot and head patterning systems that might influence bud axis initiation.  相似文献   

16.
As a member of Cnidaria, the body wall of hydra is structurally reduced to an epithelial bilayer with an intervening extracellular matrix (ECM). Biochemical and cloning studies have shown that the molecular composition of hydra ECM is similar to that seen in vertebrates and functional studies have demonstrated that cell-ECM interactions are important to developmental processes in hydra. Because vertebrate matrix metalloproteinases (MMPs) have been shown to have an important role in cell-ECM interactions, the current study was designed to determine whether hydra has homologues of these proteinases and, if so, what function these enzymes have in morphogenesis and cell differentiation in this simple metazoan. Utilizing a PCR approach, a single hydra matrix metalloproteinase, named HMMP was identified and cloned. The structure of HMMP was similar to that of vertebrate MMPs with an overall identity of about 35%. Detailed structural analysis indicated some unique features in (1) the cysteine-switch region of the prodomain, (2) the hinge region preceding the hemopexin domain, and (3) the hemopexin domain. Using a bacterial system, HMMP protein was expressed and folded to obtain an active enzyme. Substrate analysis studies indicated that recombinant HMMP could digest a number of hydra ECM components such as hydra laminin. Using a fluorogenic MMP substrate assay, it was determined that HMMP was inhibited by peptidyl hydroxamate MMP inhibitors, GM6001 and matlistatin, and by human recombinant TIMP-1. Whole-mount in situ studies indicated that HMMP mRNA was expressed in the endoderm along the entire longitudinal axis of hydra, but at relatively high levels at regions where cell-transdifferentiation occurred (apical and basal poles). Functional studies using GM6001 and TIMP-1 indicated that these MMP inhibitors could reversibly block foot regeneration. Blockage of foot regeneration was also observed using antisense thio-oligo nucleotides to HMMP introduced into the endoderm of the basal pole using a localized electroporation technique. Studies with adult intact hydra found that GM6001 could also cause the reversible de-differentiation or inhibition of transdifferentiation of basal disk cells of the foot process. Basal disk cells are adjacent to those endoderm cells of the foot process that express high levels of HMMP mRNA. In summary, these studies indicate that hydra has at least one MMP that is functionally tied to morphogenesis and cell transdifferentiation in this simple metazoan.  相似文献   

17.
Hym-301 is a peptide that was discovered as part of a project aimed at isolating novel peptides from hydra. We have isolated and characterized the gene Hym-301, which encodes this peptide. In an adult, the gene is expressed in the ectoderm of the tentacle zone and hypostome, but not in the tentacles. It is also expressed in the developing head during bud formation and head regeneration. Treatment of regenerating heads with the peptide resulted in an increase in the number of tentacles formed, while treatment with Hym-301 dsRNA resulted in a reduction of tentacles formed as the head developed during bud formation or head regeneration. The expression patterns plus these manipulations indicate the gene has a role in tentacle formation. Furthermore, treatment of epithelial animals indicates the gene directly affects the epithelial cells that form the tentacles. Raising the head activation gradient, a morphogenetic gradient that controls axial patterning in hydra, throughout the body column results in extending the range of Hym-301 expression down the body column. This indicates the range of expression of the gene appears to be controlled by this gradient. Thus, Hym-301 is involved in axial patterning in hydra, and specifically in the regulation of the number of tentacles formed.  相似文献   

18.
Summary From crude extracts ofHydra tissue a substance has been purified which prevents or retards the asexual reproduction by budding. The molecular weight is in the range of 300 to 1000 daltons. Inhibition of bud formation can be observed with concentrations equivalent to the extract from one hydra per 4 ml, that is, to a more than 10,000-fold dilution of the initial crude extract of a hydra. The purified inhibitor is active at a concentration of less than 10–8 M.Most of the inhibitor present inHydra is bound to cells. Within the cells the substance is mainly bound to particulate structures which sediment at 10,000 g. Its concentration is highest in the hypostomal region and decreases in the direction of the tentacles and peduncle. A second, lower, peak has been found in the basal disc. Treatment of the animals with a toxic agent (nitrogen mustard) which depletes the animal of interstitial cells, nematocytes and nematoblasts excludes the possibility that the inhibitor is present to any great extent in these cells. In conjunction with cell separation experiments by centrifugation of fixed cells in suspension, these results indicate that nerve cells are the most likely sites of storage of the inhibiting substance, although epithelial cells are not excluded as sources for the inhibitor.  相似文献   

19.
Noggin, along with other secreted bone morphogenetic protein (BMP) inhibitors, plays a crucial role in neural induction and neural tube patterning as well as in somitogenesis, cardiac morphogenesis and formation of the skeleton in vertebrates. The BMP signalling pathway is one of the seven fundamental pathways that drive embryonic development and pattern formation in animals. Understanding its evolutionary origin and role in pattern formation is, therefore, important to evolutionary developmental biology (evo-devo). We have studied the evolutionary origin of BMP–Noggin antagonism in hydra, which is a powerful diploblastic model to study evolution of pattern-forming mechanisms because of the unusual cellular dynamics during its pattern formation and its remarkable ability to regenerate. We cloned and characterized the noggin gene from hydra and found it to exhibit considerable similarity with its orthologues at the amino acid level. Microinjection of hydra Noggin mRNA led to duplication of the dorsoventral axis in Xenopus embryos, demonstrating its functional conservation across the taxa. Our data, along with those of others, indicate that the evolutionarily conserved antagonism between BMP and its inhibitors predates bilateral divergence. This article reviews the various roles of Noggin in different organisms and some of our recent work on hydra Noggin in the context of evolution of developmental signalling pathways.  相似文献   

20.
The results of three groups of experiments on the control of foot (basal disk) differentiation in Hydra viridis are well'; predicted by mathematical models of remarkable simplicity. In each of the experiments, a group of cells, called the actor, may or may not form a foot. The probability of foot formation is influenced by actor-specific properties and by properties of the rest of the animal, which may be called the setting.A natural interpretation of the mathematical models is that the actor forms a foot or not according to the balance of an inhibition of foot formation determined by the setting, and a critical inhibition level or “threshold”, an assumed actor characteristic. Threshold and inhibition are assumed to be normal random variables, the means of which depend on the parameters of the experiment. A foot is assumed to form in an individual case if the threshold is greater than, the inhibition.When transformed to a probit or logit scale, as described in the text, the mean intensity of inhibition appears to increase linearly with the quantity of foot tissue and to decrease linearly with increasing distance from the foot end of the hydra's body axis. The mean level of the threshold appears to increase linearly with time during which actor tissue is removed from inhibitory influences, but varies nonlinearly with position within the hydra.The inhibition-threshold models are tested here through statistically more tractable but numerically indistinguishable models of different mathematical form. If interpreted directly these models suggested that the odds that a foot will form are the product of an actor-determined scalar and a setting-determined scalar. The logarithms of these scalars are linear functions of the experimental parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号