首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Zong  R Yan  A August  J E Darnell  Jr    H Hanafusa 《The EMBO journal》1996,15(17):4515-4525
The proto-oncogene c-eyk, the cellular counterpart of a transforming oncogene, v-eyk, encodes a receptor protein tyrosine kinase with a distinctive extracellular region. We now demonstrate that c-Eyk can be constitutively activated through dimerization, and that the active Eyk displays a unique signaling pattern. When the kinase domain of c-Eyk was fused to the extracellular and transmembrane domains of CD8, the resulting chimera showed elevated kinase activity and caused cellular transformation. We found that the activated Eyk kinases, both v- and c-Eyk, constitutively stimulate the JAK-STAT pathway, while exerting little effect on other signaling routes such as the Ras-MAP kinase and the JNK pathways. The activated Eyk kinases specifically stimulate tyrosine phosphorylation of STAT1, STAT3 and JAK1. These downstream molecules also co-immunoprecipitate with the constitutively dimerized form of Eyk. The Eyk kinase activity is required for STAT1 stimulation. We found that the activation of STAT1 but not STAT3 correlates well with cellular transformation. In constitutively stimulating the JAK-STAT pathway, particularly STAT1, Eyk is unique in its downstream signaling and may be dependent on this pathway for cellular transformation.  相似文献   

2.
3.
Little is known about the molecular mechanisms by which STAT proteins promote tumorigenesis. Drosophila is an ideal system for investigating this issue, as there is a single STAT (Stat92E), and its hyperactivation causes overgrowths resembling human tumors. Here we report the first identification of a dominant-active Stat92E protein, Stat92EΔNΔC, which lacks both N- and C-termini. Mis-expression of Stat92EΔNΔCin vivo causes melanotic tumors, while in vitro it transactivates a Stat92E-luciferase reporter in the absence of stimulation. These gain-of-function phenotypes require phosphorylation of Y711 and dimer formation with full-length Stat92E. Furthermore, a single point mutation, an R442P substitution in the DNA-binding domain, abolishes Stat92E function. Recombinant Stat92ER442P translocates to the nucleus following activation but fails to function in all assays tested. Interestingly, R442 is conserved in most STATs in higher organisms, suggesting conservation of function. Modeling of Stat92E indicates that R442 may contact the minor groove of DNA via invariant TC bases in the consensus binding element bound by all STAT proteins. We conclude that the N- and C- termini function unexpectedly in negatively regulating Stat92E activity, possibly by decreasing dimer dephosphorylation or increasing stability of DNA interaction, and that Stat92ER442 has a nuclear function by altering dimer:DNA binding.  相似文献   

4.
5.
Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca(2+) and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G(2)/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes.  相似文献   

6.
IL-4-induced Stat6 signaling is active in a variety of cell types and plays a role in cell proliferation/growth and resistance to apoptosis. Using EMSA, we identified differential IL-4/Stat6 activities in colorectal cancer cell lines, HT-29 being active Stat6high phenotype and Caco-2 being defective Stat6null phenotype, respectively. Active Stat6high HT-29 cells exhibited resistance to apoptosis by flowcytometry and aggressive metastasis by Transwell assay compared with defective Stat6null Caco-2 cells. Comparing one another using RT-PCR, Stat6high HT-29 cells expressed more mRNA of anti-apoptotic and pro-metastatic genes Survivin, MDM2, and TMPRSS4, while Stat6null Caco-2 cells expressed more mRNA of pro-apoptotic and anti-metastatic genes BAX, CAV1, and P53, respectively. This is the first study describing correlations of IL-4/Stat6 activities with apoptosis and metastasis in colon cancer. These findings, together with the observation of constitutive Stat6 activation in many human malignancies, suggest that Stat6 activities could be a biomarker for cancer cell’s invasive/metastatic capability.  相似文献   

7.
8.
Stat3 Activation Is Required for Cellular Transformation by v-src   总被引:30,自引:2,他引:28  
Stat3 activation has been associated with cytokine-induced proliferation, anti-apoptosis, and transformation. Constitutively activated Stat3 has been found in many human tumors as well as v-abl- and v-src-transformed cell lines. Because of these correlations, we examined directly the relationship of activated Stat3 to cellular transformation and found that wild-type Stat3 enhances the transforming potential of v-src while three dominant negative Stat3 mutants inhibit v-src transformation. Stat3 wild-type or mutant proteins did not affect v-ras transformation. We conclude that Stat3 has a necessary role in v-src transformation.  相似文献   

9.
The role of Jak/STAT signaling in heart tissue renin-angiotensin system   总被引:4,自引:0,他引:4  
The involvement of the Renin Angiotensin System (RAS) and the role of its primary effector, angiotensin II (Ang II), in etiology of myocardial hypertrophy and ischemia is well documented. In several animal models, the RAS is activated in cardiac cell types that express the receptor AT1, and/or AT2, through which the Ang II mediated effects are promoted. In this article, we briefly review recent experimental evidence on the critical role of a prominent signaling pathway, the Jak/Stat pathway in activation and maintenance of the local RAS in cardiac hypertrophy and ischemia. Recent studies in our laboratory document that the promoter of the prohormone angiotensinogen (Ang) gene serves as the target site for STAT proteins, thereby linking the Jak/Stat pathway to activation of heart tissue autocrine Ang II loop. Stat5A and Stat6, are selectively activated when the heart is subjected to ischemic injury, whereas activation of Stat3 and Stat5A is involved in myocardial hypertrophy. Blockage of RAS activation by treatment with specific inhibitor promotes a remarkable recovery in functional hemodynamics of the myocardium. Thus, activation of selective sets of Stat proteins constitutes the primary signaling event in the pathogenesis of myocardial hypertrophy and ischemia.  相似文献   

10.
11.
The G protein-coupled receptor P2Y2 nucleotide receptor (P2Y2R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y2Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y2R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-α protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y2R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y2R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.  相似文献   

12.
13.
14.
Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis.  相似文献   

15.
16.
17.
Extracellular nucleotides stimulate human neutrophils by activating the purinergic P2Y2 receptor. However, it is not completely understood which types of G proteins are activated downstream of this P2 receptor subtype. We investigated the G-protein coupling to P2Y2 receptors and several subsequent signaling events. Treatment of neutrophils with pertussis toxin (PTX), a Gi protein inhibitor, caused only ∼75% loss of nucleotide-induced Ca2+ mobilization indicating that nucleotides cause Ca2+ mobilization both through Gi-dependent and Gi-independent pathways. However, the PLC inhibitor U73122 almost completely inhibited Ca2+ mobilization in both nucleotide- and fMLP-stimulated neutrophils, strongly supporting the view that both the PTX-sensitive and the PTX-insensitive mechanism of Ca2+ increase require activation of PLC. We investigated the dependence of ERK phosphorylation on the Gi pathway. Treatment of neutrophils with PTX caused almost complete inhibition of ERK phosphorylation in nucleotide or fMLP activated neutrophils. U73122 caused inhibition of nucleotide- or fMLP-stimulated ERK phosphorylation, suggesting that although pertussis toxin-insensitive pathways cause measurable Ca2+ mobilization, they are not sufficient for causing ERK phosphorylation. Since PLC activation leads to intracellular Ca2+ increase and PKC activation, we investigated if these intracellular events are necessary for ERK phosphorylation. Exposure of cells to the Ca2+ chelator BAPTA had no effect on nucleotide- or fMLP-induced ERK phosphorylation. However, the PKC inhibitor GF109203X was able to almost completely inhibit nucleotide- or fMLP-induced ERK phosphorylation. We conclude that the P2Y2 receptor can cause Ca2+ mobilization through a PTX-insensitive but PLC-dependent pathway and ERK phosphorylation is highly dependent on activation of the Gi proteins.  相似文献   

18.
19.

Background

ADP is an important physiological agonist that induces integrin activation and platelet aggregation through its receptors P2Y1 (Gαq-coupled) and P2Y12 (Gαi-coupled). P2Y12 plays a critical role in platelet activation and thrombosis. Adenosine-based P2Y12 antagonists, 2-methylthioadenosine 5′-monophosphate triethylammonium salt hydrate (2MeSAMP) and Cangrelor (AR-C69931MX) have been widely used to demonstrate the role of P2Y12 in platelet function. Cangrelor is being evaluated in clinical trials of thrombotic diseases. However, a recent study reported that both 2MeSAMP and Cangrelor raise intra-platelet cAMP levels and inhibit platelet aggregation through a P2Y12-independent mechanism.

Methodology/Principal Findings

The present work, using P2Y12 deficient mice, sought to clarify previous conflicting reports and to elucidate the mechanisms by which 2MeSAMP and Cangrelor inhibit platelet activation and thrombosis. 2MeSAMP and Cangrelor inhibited aggregation and ATP release of wild-type but not P2Y12 deficient platelets. 2MeSAMP and Cangrelor neither raised intracellular cAMP concentrations nor induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in washed human or mouse platelets. Furthermore, unlike the activators (PGI2 and forskolin) of the cAMP pathway, 2MeSAMP and Cangrelor failed to inhibit Ca2+ mobilization, Akt phosphorylation, and Rap1b activation in P2Y12 deficient platelets. Importantly, while injection of Cangrelor inhibited thrombus formation in a FeCl3-induced thrombosis model in wild-type mice, it failed to affect thrombus formation in P2Y12 deficient mice.

Conclusions

These data together demonstrate that 2MeSAMP and Cangrelor inhibit platelet function through the P2Y12-dependent mechanism both in vitro and in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号