首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gross photosynthesis and respiration rates of leaves at different canopy heights in a Rhizophora stylosa Griff. stand were measured monthly over 1 year at Manko Wetland, Okinawa Island, Japan, which is the northern limit of its distribution. The light-saturated net photosynthesis rate for the leaves at the top of the canopy showed a maximum value of 17 μmol CO2 m−2 s−1 in warm season and a minimum value of 6 μmol CO2 m−2 s−1 in cold season. The light-saturated gross photosynthesis and dark respiration rates of the leaves existing at the top of the canopy were 2−7 times and 3–16 times, respectively, those of leaves at the bottom of the canopy throughout the year. The light compensation point of leaves showed maximum and minimum peaks in warm season and cold season, respectively. The annual canopy gross photosynthesis, foliage respiration, and surplus production were estimated as 117, 49, and 68 t CO2 ha−1 year−1, respectively. The energy efficiency of the annual canopy gross photosynthesis was 2.5%. The gross primary production GPP fell near the regression curve of GPP on the product of leaf area index and warmth index, the regression curve which was established for forests in the Western Pacific with humid climates.  相似文献   

2.
Rates of net photosynthesis and dark respiration were measured for detached needles ofPinus pumila trees growing on the Kiso mountain range in central Japan in 1987. Dependency of photosynthesis on light and temperature was examined in relation to needle age and season. The light saturation point of net photosynthesis was lower in 3- and 4-yr-old needles than that in current (flushed in 1987), 1- and 2-yr-old needles.P nmax, net photosynthetic rates at 1000 μmol m−2 s−1 and 15°C, of needles from 1- to 4-yr-old generally decreased with needle age.P nmax of 1- to 4-yr-old needles became higher in August than in other months, andP nmax of current needles did so in September. Current needles showed high respiration rates (at 15°C) only in August. Optimum air temperatures for net photosynthesis at 1000 μmol m−2 s−1 were between 10 and 15°C for current and 1-yr-old needles. The temperature coefficient of dark respiration rates was 2.3–3.3 for current needles from August to October, and 2.2 for 1-yr-old needles in mid-July.  相似文献   

3.
Family Chenopodiaceae is an intriguing lineage, having the largest number of C4 species among dicots, including a number of anatomical variants of Kranz anatomy and three single-cell C4 functioning species. In some previous studies, during the culture of Bienertia cycloptera Bunge ex Boiss., carbon isotope values (δ13C values) of leaves deviated from C4 to C3−C4 intermediate type, raising questions as to its mode of photosynthesis during growth in natural environments. This species usually co-occurs with several Kranz type C4 annuals. The development of B. cycloptera morphologically and δ13C values derived from plant samples (cotyledons, leaves, bracts, shoots) were analyzed over a complete growing season in a salt flat in north central Iran, along with eight Kranz type C4 species and one C3 species. For a number of species, plants were greenhouse-grown from seeds collected from the site, in order to examine leaf anatomy and C4 biochemical subtype. Among the nine C4 species, the cotyledons of B. cycloptera, and of the Suaeda spp. have the same respective forms of C4 anatomy occurring in leaves, while cotyledons of members of tribe Caroxyloneae lack Kranz anatomy, which is reflected in the δ13C values found in plants grown in the natural habitat. The nine C4 species had average seasonal δ13C values of −13.9‰ (with a range between species from −11.3 to −15.9‰). The measurements of δ13C values over a complete growing season show that B. cycloptera performs C4 photosynthesis during its life cycle in nature, similar to Kranz type species, with a seasonal average δ13C value of −15.2‰. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Shoots of the monocotyledonous perennial Carex acutiformis were grown in open (28 shoots m−2) and dense stands (280 shoots m−2). For fully grown stands the distribution of relative PPFD and leaf nitrogen per unit leaf area over canopy depth was determined. Light response of photosynthesis was measured on leaf segments sampled at various heights in the stands. Relations between parameters of these curves and leaf nitrogen were investigated. Simulations showed that in the open stand daily canopy photosynthesis was not affected by nitrogen redistribution in the canopy. For the dense stand however, a uniform nitrogen distribution would lead to only 73% of the maximum net carbon gain by the stand under optimal nitrogen distribution. The actual canopy photosynthesis was only 7% less than this theoretical maximum; the actual nitrogen distribution of the dense stand clearly tended to the optimal distribution. The vertical pattern of the nitrogen distribution was to a large extent determined by the minimum leaf nitrogen content. The relatively high minimum leaf nitrogen content found for Carex leaves may perhaps be necessary to maintain the physiological function of the basal parts of the leaves.  相似文献   

5.
Rates of photosynthesis vary with foliage age and typically decline from full-leaf expansion until senescence occurs. This age-related decline in photosynthesis is especially important in species that retain foliage for several years, yet it is not known whether the internal conductance to CO2 movement (g i) plays any role. More generally, g i has been measured in only a few conifers and has never been measured in leaves or needles older than 1 year. The effect of ageing on g i was investigated in Pinus pinaster, a species that retains needle for 4 or more years. Measurements were made in autumn when trees were not water limited and after leaf expansion was complete. Rates of net photosynthesis decreased with needle age, from 8 μmol m−2 s−1 in fully expanded current-year needles to 4.4 μmol m−2 s−1 in 3-year-old needles. The relative limitation due to internal conductance (0.24–0.35 out of 1) was in all cases larger than that due to stomatal conductance (0.13–0.19 out of 1). Internal conductance and stomatal conductance approximately scaled with rates of photosynthesis. Hence, there was no difference among year-classes in the relative limitations posed by internal and stomatal conductance or evidence that they cause the age-related decline in photosynthesis. There was little evidence that the age-related decline in photosynthesis was due to decreases in contents of N or Rubisco. The decrease in rates of photosynthesis from current-year to older needles was instead related to a twofold decrease in rates of photosynthesis per unit nitrogen and V cmax/Rubisco (i.e., in vivo specific activity).  相似文献   

6.
Glaucium flavum is a biennial plant that bears a rosette of leaves, producing a flower stalk, bracteate monochasium, in its second year. The aims of this work were both to investigate the contribution of bracts to gas-exchange activities in this species and to compare this contribution to that of rosette leaves. In addition, we investigated the extent to which its responses can be explained by chloroplast ultrastructure, as well as the possible role of nutrient concentrations in the physiological responses of both leaf types. Gas exchange and plant characteristics regarding chlorophyll fluorescence were examined in a field experiment; we also determined leaf relative water content, tissue concentrations of photosynthetic pigments, chloroplast ultrastructure and nutrient contents. Although bracts indeed contributed to gas-exchange activities of G. flavum, rosette leaves showed higher values of net photosynthetic rate and stomatal conductance to CO2 for photosynthetic photon flux density above 200 μmol m−2 s−1. The incongruities in photosynthetic rates between bracts and leaves may be explained by the bigger chloroplasts of rosette leaves, which results in a larger membrane surface area. This agrees with the higher pigment concentrations and quantum efficiency of photosystem II values recorded as well for rosette leaves. On the other hand, bracts showed higher sodium concentrations, which could be a mechanism for salt tolerance of G. flavum.  相似文献   

7.
We investigated seasonal changes in dry mass and CO2 exchange rate in fruit and leaves of the evergreen tree Cinnamomum camphora with the aim of quantitatively determining the translocation balance between the two organs. The fruit dry mass growth peaked in both August and October: the first increase was due to fruit pulp development and the second to seed development. Fruit respiration also increased with the rapid increase in fruit dry mass. Therefore, the carbohydrates required for fruit development showed two peaks during the reproductive period. Fruit photosynthesis was relatively high in early August, when fruit potentially re-fixed 75% of respired CO2, indicating that fruit photosynthesis contributed 15–35% of the carbon requirement for fruit respiration. Current-year leaves completed their growth in June when fruit growth began. Current-year leaves translocated carbohydrates at a rate of approximately 10–25 mg dry weight (dw) leaf−1 day−1 into other organs throughout the entire fruit growth period. This rate of translocation from current-year leaves was much higher than the amount of carbohydrate required for reproduction (ca. 3 mg dw fruit−1 day−1). Given the carbon balance between fruit and current-year leaves, carbohydrates for reproduction were produced within the current-year fruit-bearing shoots. C. camphora would be adaptive for steadily supplying enough amount of carbohydrate to the fruits, as there was little competition for carbohydrates between the two organs. As assimilates by leaves are used for processes such as reproduction and the formation of new shoots, photosynthesis by reproductive organs is considered to be important to compensate for reproductive cost.  相似文献   

8.
Net photosynthesis and dark respiration (CO2 flux) of Antarctic mosses were measured at Langhovde, East Antarctica, from 9 to 17 January 1988. Moss blocks were taken from communities in the Yukidori Valley (69°14′30″S, 39°46′00″E) at Langhovde. Each block was composed ofCeratodon purpureus andBryum pseudotriquetrum, orB. pseudotriquetrum. The upper part of the block was used to measure net photosynthesis and dark respiration. The net photosynthesis of each sample was measured in the field for one or three days with two infrared CO2 gas analyzers and an assimilation chamber. The relationships of net photosynthetic rate and dark respiration rate, to the water content of the sample, the intensity of solar radiation and the moss temperature were estimated from the field data. The maximum rate of net photosynthesis was about 4 μmol CO2 m−2s−1 at saturating radiation intensity and at optimum temperature, about 10°C. Environmental features of moss habitats in the Yukidori Valley are discussed in relation to these results.  相似文献   

9.
Photosynthetic and respiratory activities and gross production in relation to temperature conditions were investigated in the population of an evergreen herb,Pyrola japonica, growing on the floor of a deciduous forest in the warm temperate region of central Japan. Analysis of the temperature-photosynthesis relationship ofP. japonica leaves during the growing season indicated distinct seasonal changes in the temperature optimum for photosynthesis. This population was found to be acclimatable to ambient air temperatures exceeding 15C, but this acclimation became less pronounced under thermal conditions below 15 C. This plant possessed narrow photosynthetic optima in the warm season but wide optima in the cold season. The shape of the temperature-respiration curve did not vary significantly with the months except for April. The Q10 for respiration between 10 C and 20 C was calculated to be 1.93–2.65. Annual dry matter loss associated with respiration was estimated to amount to 159.1 g d.w.m−2 based on the measurements of the seasonal changes in the respiratory activity of each organ. Gross production of this population was estimated to be 219.3 g d.w.m−2 year−1 as the sum total of the net production (60.2 g d.w.m−2year−1) and the respiration. Monthly gross production was high in the early growing season, and low and stable in winter.  相似文献   

10.
Primary leaves of bean (Phaseolus vulgaris L.) seedlings cultivated for 14 days in a growth chamber on complete (control) and phosphate deficient (−P) Knop liquid medium were used for measurements. The −P leaves were smaller and showed an increased specific leaf area (SLA). Their inorganic phosphate (Pi) concentration was considerably lowered. They did not show any significant changes in chlorophyll (Chl) (a + b) concentration and in their net CO2 assimilation rate when it was estimated under the conditions close to those of the seedlings growth. Light response curves of photosynthetic net O2 evolution (P NO2) of the leaves for the irradiation range up to 500 μmol(photon) m−2 s−1 were determined, using the leaf-disc Clark oxygen electrode. The measurements were taken under high CO2 concentration of about 1 % and O2 concentrations of 21 % or lowered to about 3 % at the beginning of measurement. The results obtained at 21 % O2 and the irradiations close to or higher than those used during the seedlings growth revealed the phosphorus stress suppressive effect on the leaf net O2 evolution, however, no such effect was observed at lower irradiations. Other estimated parameters of P NO2 such as: apparent quantum requirement (QRA) and light compensation point (LCP) for the control and −P leaves were similar. However, with a high irradiation and lowered O2 concentration the rate of P NO2 for the −P leaves was markedly higher than that for the control, in relation to both the leaf area and leaf fresh mass. This difference also disappeared at low irradiations, but the estimated reduced QRA values indicate, under those conditions, the increased yield of photosynthetic light reaction, especially in the −P leaves. The presented results confirm the suggestion that during the initial phase of insufficient phosphate feeding the acclimations in the light phase of photosynthesis, both structural and functional appear. They correspond, probably, to the increased energy costs of carbon assimilation under phosphorus stress, e.g. connected with raised difficulties in phosphate uptake and turnover and enhanced photorespiration. Under the experimental conditions especially advantageous for the dark phase of photosynthesis (saturating CO2 and PAR, low O2 concentration), those acclimations may be manifested as an enhancement of photosynthetic net O2 evolution.  相似文献   

11.
The photosynthetic responses of the tropical tree species Acacia nigrescens Oliv. grown at different atmospheric CO2 concentrations—from sub-ambient to super-ambient—have been studied. Light-saturated rates of net photosynthesis (A sat) in A. nigrescens, measured after 120 days exposure, increased significantly from sub-ambient (196 μL L−1) to current ambient (386 μL L−1) CO2 growth conditions but did not increase any further as [CO2] became super-ambient (597 μL L−1). Examination of photosynthetic CO2 response curves, leaf nitrogen content, and leaf thickness showed that this acclimation was most likely caused by reduction in Rubisco activity and a shift towards ribulose-1,5-bisphosphate regeneration-limited photosynthesis, but not a consequence of changes in mesophyll conductance. Also, measurements of the maximum efficiency of PSII and the carotenoid to chlorophyll ratio of leaves indicated that it was unlikely that the pattern of A sat seen was a consequence of growth [CO2] induced stress. Many of the photosynthetic responses examined were not linear with respect to the concentration of CO2 but could be explained by current models of photosynthesis.  相似文献   

12.
This study was conducted to investigate the influence of salicylic acid (SA) on the growth and changes of nucleic acids, protein, photosynthetic pigments, sugar content and photosynthesis levels in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). The most significant changes in the content of nucleic acids and proteins was observed at the concentration 10−4 M SA between 8 and 12 day of cultivation. This concentration of SA increased the number of cells (about 40 %) and content of proteins (about 60 %) and its secretion to the medium. The slight stimulation of protein secretion occurred on the 12th day of cultivation at concentration 10−4 M, while in the range of 10−5 M to 10−6 M the protein secretion was inhibited. SA also stimulated the content of nucleic acids, especially RNA by 20–60 %, compared with the control. The most stimulating influence upon the contents of chlorophylls a and b (50–70 %), total carotenoids (25–57 %), sugar (27–41 %) and intensity of net photosynthesis (18–33 %) was found at 10−4 M of SA. At the concentration of 10−6 M SA the slight inhibition of growth and biochemical activity of the algae was recorded at the first days of cultivation.  相似文献   

13.
The adaptation ofCamellia rusticana, an evergreen broad-leaved shrub found in areas of heavy snowfall in Japan, to heavy snowfall environments, and the mechanisms by which it is damaged in winter above the snow, were investigated. The stomatal response and photosynthetic characteristics ofC. rusticana were compared to those ofCamellia japonica found in areas of light snowfall. In field conditions, the mean net photosynthesis ofC. rusticana at photon flux density (PFD) over 200 μmol m−2s−1 (Pn(>200). was 50% larger than that ofC. japonica, but in both light saturated and CO2 saturated conditions, the O2 evolution rate (Pc) ofC. rusticana was not different from that ofC. japonica. Mean leaf conductance at PFD over 200 μmol m−2s−1 (gl(>200)) was about 100% larger than that ofC. japonica in the field. The Pn(>200)) was 50% ratio ofC. rusticana was 37% higher than that ofC. japonica which suggests thatC. rusticana's larger Pn(>200) can be explained by its larger gl(>200). WhenC. rusticana trees wintering underneath the snow were projected above it, the leaves of these plants showed serious drought within five days in non-freezing conditions. Their Pc and the maximum stomatal conductance decreased by half and did not recover. The leaves ofC. rusticana showed larger gl(>200) and a less sensitive stomatal response to the decrease of leaf water potential than that ofC. japonica. The stomata characteristics ofC. rusticana caused larger net photosynthesis than that ofC. japonica during the no snow period, and caused the need for snow cover in winter as protector from winter drought.  相似文献   

14.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

15.
Light and electron microscopy was used to relate histologicaland ultrastructural differences of cotton (Gossypium hirsutumL.) leaves, bracts, and capsule walls to their different photosyntheticactivities. Light microscopy revealed that the leaf thicknesswas approximately 152µm, had a well-defined internal organizationwith elongated palisade mesophyll cells and loosely packed spongymesophyll cells. In contrast, the bract was thinner (111 µm),lacked a defined palisade layer, and was largely composed ofinternal air spaces. The capsule wall was very thick (1013µm)and composed of numerous tightly packed, paren-chymatous corticalcells with little or no intercellular air space. Chloroplastswith well-defined granal stacks and extensive stroma lamellaewere observed in each of these three tissues, however, theirdensity was always greater in the palisade cells of the leafcompared to spongy mesophyll cells of the bract and the parenchymatouscells of the capsule wall. The low rates of photosynthesis inthe bracts and the capsule wall were associated with the internalorganization of these tissues. Key words: Cotton, photosynthesis, anatomy, cuticle, tissues  相似文献   

16.
Growth of a floating-leaved plant,Hydrocharis dubia L., was examined under varying nutrient conditions between 0.3 and 30 mgN l−1 total inorganic nitrogen.H. dubia plants cultured under the most nutrient-rich condition showed the highest maximum ramet density (736 m−2), the highest maximum biomass (80.4 g dry weight m−2), and the highest total net production (185 g dry weight m−2 in 82 days). Plants under nutrient-poor conditions had a relatively large proportion of root biomass and a small proportion of leaves with a long life span. Compared with other floating-leaved and terrestrial plants, the maximum biomass ofH. dubia was relatively small. This, and the rapid biomass turnover, was related to the short life span of leaves (13.2–18.7 days) and large biomass distribution to leaves.  相似文献   

17.
Supplementary UV-B (12.2 kJ m−2 d−1 UV-BBE) provided to Vigna radiata for 2 h d−1 suppressed the length of root, shoot and whole plants, number of leaves, total leaf area, leaf area index, specific leaf mass, fresh and dry mass of leaves and shoot, relative growth rate and net productivity. In unstressed green gram plants (10 kJ m−2 d−1 UV-BBE), triadimefon (TRIAD) (20 mg dm−3) enhanced growth in all parameters over control. The growth promoting effect of TRIAD enabled the UV-B impacted plants to overcome the growth inhibitions to varying degrees indicating its protective potential against UV-B stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 μmol photons m−2 s−1). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO2 (35 μM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO2-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.  相似文献   

19.
Gross production and carbon cycling in aPhyllostachys bambusoides stand in Kyoto Prefecture, central Japan, were determined, and then a compartment model showing the carbon stock and cycling within the ecosystem was developed. Aboveground carbon stock was 52.3 tC ha−1, increasing at a rate of 3.6 tC ha−1 year−1. Belowground carbon stock was 20.8 tC ha−1 in the root system and 92.0 tC ha−1 in the soil. Aboveground net production was 11.2 tC ha−1 year−1. Belowground net production was crudely estimated at 4.5 tC ha−1 year−1. The gross production was estimated at 41.8 tC ha−1 year−1 by summing the amount of outflow to the environment and the increment in biomass. Leaves consumed 13.7 tC ha−1 year−1 by respiration; the rest (41.8−13.7=28.1 tC ha−1 year−1) was surplus production of the leaves and flowed into the other compartments. The amounts of construction and maintenance respiration of the aboveground compartments were 3.4 and 18.5 tC ha−1 year−1, respectively. The annual amount of soil respiration was 11.2 tC ha−1 year−1. Soil respiration levels of 4.3 and 3.1 tC ha−1 year−1 were estimated for the flow of root respiration and root detritus. The proportion of net to gross production was 37%, which fell within the range of young and mature forests. A shorter life span of culms, compared to tree trunks, resulted in smaller biomass accumulation ratio (biomass/net production) in the ecosystem, of 4.66.  相似文献   

20.
It has been demonstrated that during the whole year the stems are photosyntheticaly active and capable of assimilating atmospheric CO2. The intensity of photosynthesis varies. During the vegetation period the registered net photosynthesis lasted up to 13 hours per day, and in the leafless period for 2–3 hours a day. Photosynthesis was registered also at temperatures below zero (−3 °C) as a reduced CO2 evolution in light in comparison with darkness. The maximal net photosynthesis values during the vegetation period amounted to 6 up 8 μmol (CO2)·m−2·s−1, and in the leafless period 0.5 – 1 μmol (CO2)·m−2·s−1, and they were close to being up to twice as big as the values obtained of darkness respiration. An increase of the photosynthetic activity of stems preceded the spring development of the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号