首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β2-microglobulin, the light chain component of the major histocompatibility complex I, is involved in the development of DRA, an amyloid deposition disease occurring in man. Specifically, the β2-microglobulin component, dissociated form the complex heavy chain, gives rise to amyloidogenic deposits in the joints of patients exposed to long dialysis periods. β2-microglobulin three-dimensional structure is based on an antiparallel β?barrel fold, with immunoglobulin domain topology, displaying structural flexibility in the crystal and NMR structures so fare determined. The structural bases of amyloidogenic potential in β2-microglobulin can be related to local unfolding, to the tendency to aggregate laterally through non-compensated β-strands, and partly also to its trend towards N-terminal proteolytic degradation. Such trends emerge quite clearly from inspection of a limited number of crystal structures of β2-microglobulin as an isolated chain, separated form the major histocompatibility complex I heavy chain.  相似文献   

2.
The major histocompatibility complex (MHC) class I molecule plays a crucial role in cytotoxic lymphocyte function. Functional class I MHC exists as a heterotrimer consisting of the MHC class I heavy chain, an antigenic peptide fragment, and beta2-microglobulin (beta2m). beta2m has been previously shown to play an important role in the folding of the MHC heavy chain without continued beta2m association with the MHC complex. Therefore, beta2m is both a structural component of the MHC complex and a chaperone-like molecule for MHC folding. In this study we provide data supporting a model in which the chaperone-like role of beta2m is dependent on initial binding to only one of the two beta2m interfaces with class 1 heavy chain. beta2-Microglobulin binding to an isolated alpha3 domain of the class I MHC heavy chain accurately models the biochemistry and thermodynamics of beta2m-driven refolding. Our results explain a 1000-fold discrepancy between beta2m binding and refolding of MHC1. The biochemical study of the individual domains of complex molecules is an important strategy for understanding their dynamic structure and multiple functions.  相似文献   

3.
beta 2-Microglobulin is the smaller, relatively non-polymorphic chain of class I major histocompatibility complex proteins. We have previously described a mutant mouse cell line which had been selected for loss of the class I thymus leukemia (TL) antigen and had concomitantly lost surface expression of H-2k antigens. Expression of class I antigens on the cell surface was restored by fusion to an antigenically distinct mouse lymphoma line, and the defect in the mutant was shown to be the loss of a functional beta 2-microglobulin gene. We now describe three additional mutants with the same phenotype, all selected for loss of TL but after different types of mutagenesis. All of these mutants have genomic rearrangements resulting in the absence of a functional beta 2-microglobulin gene. These data provide strong evidence for the requirement of beta 2-microglobulin for cell surface expression of the heavy chain of class I major histocompatibility complex proteins. We further show that the defects in at least one beta 2-microglobulin gene in each mutant cell line map to the same small DNA segment within the first intron. The breakpoints of these mutations define a hypermutable site within the mouse beta 2-microglobulin gene.  相似文献   

4.
The major histocompatibility complex (MHC) class I antigens contain a light chain, beta 2-microglobulin, non-covalently associated to the transmembrane heavy alpha-chain carrying the allotypic determinants. Since the C1q complement component is known to associate with beta 2-microglobulin, and we recently found that activated C1s complement was capable of cleaving beta 2-microglobulin, we decided to investigate the proteolytic activity of C1 complement towards the heavy chain of class I antigens. Our results demonstrate that human C1s complement cleaves the heavy chain of human class I antigens into at least two fragments, with apparent molecular weights of 22,000 and 24,000 g/mol on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), under both reducing and non-reducing conditions. The cleavage of the heavy chain is inhibited by the presence of C1 esterase inhibitor. The molecular weights of the fragments are in agreement with the cleavage located in the area between the disulphide loops of the alpha 2-and alpha 3-domains of the heavy chain. In addition human C1s complement is able to cleave H-2 antigens from mouse in a similar fashion but not rat MHC class I antigen or mouse MHC class II antigen (I-Ad). Mouse MHC class I antigen-specific determinants could also be detected in supernatant from mouse spleen cells incubated with C1r and C1s. These results indicate the presence in the body fluids of a non-membrane-bound soluble form of the alpha 1-and alpha 2-domains which represent the binding site for antigenic peptides.  相似文献   

5.
We have translated major histocompatibility complex (MHC) class I heavy chains and human beta 2-microglobulin in vitro in the presence of microsomal membranes and a peptide from the nucleoprotein of influenza A. This peptide stimulates assembly of HLA-B27 heavy chain and beta 2-microglobulin about fivefold. By modifying this peptide to contain biotin at its amino terminus, we could precipitate HLA-B27 heavy chains with immobilized streptavidin, thereby directly demonstrating class I heavy chain-peptide association under close to physiological conditions. The biotin-modified peptide stimulates assembly to the same extent as the unmodified peptide. Both peptides bind to the same site on the HLA-B27 molecule. Immediately after synthesis of the HLA-B27 heavy chain has been completed, it assembles with beta 2-microglobulin and peptide. These interactions occur in the lumen of the microsomes (endoplasmic reticulum), demonstrating that the peptide must cross the microsomal membrane in order to promote assembly. The transfer of peptide across the microsomal membrane is a rapid process, as peptide binding to heavy chain-beta 2-microglobulin complexes is observed in less than 1 min after addition of peptide. By using microsomes deficient of beta 2-microglobulin (from Daudi cells), we find a strict requirement of beta 2-microglobulin for detection of peptide interaction with the MHC class I heavy chain. Furthermore, we show that heavy chain interaction with beta 2-microglobulin is likely to precede peptide binding. Biotin-modified peptides are likely to become a valuable tool in studying MHC antigen interaction and assembly.  相似文献   

6.
Members of the CD1 family of membrane glycoproteins can present antigenic lipids to T lymphocytes. Like major histocompatibility complex class I molecules, they form a heterodimeric complex of a heavy chain and beta(2)-microglobulin (beta(2)m) in the endoplasmic reticulum (ER). Binding of lipid antigens, however, takes place in endosomal compartments, similar to class II molecules, and on the plasma membrane. Unlike major histocompatibility complex class I or CD1b molecules, which need beta(2)m to exit the ER, CD1d can be expressed on the cell surface as either a free heavy chain or associated with beta(2)m. These differences led us to investigate early events of CD1d biosynthesis and maturation and the role of ER chaperones in its assembly. Here we show that CD1d associates in the ER with both calnexin and calreticulin and with the thiol oxidoreductase ERp57 in a manner dependent on glucose trimming of its N-linked glycans. Complete disulfide bond formation in the CD1d heavy chain was substantially impaired if the chaperone interactions were blocked by the glucosidase inhibitors castanospermine or N-butyldeoxynojirimycin. The formation of at least one of the disulfide bonds in the CD1d heavy chain is coupled to its glucose trimming-dependent association with ERp57, calnexin, and calreticulin.  相似文献   

7.
beta2-Microglobulin (beta2m) is the non-covalently bound light chain of the human class I major histocompatibility complex (MHC-I). The natural turnover of MHC-I gives rise to the release of beta2m into plasmatic fluids and to its catabolism in the kidney. beta2m dissociation from the heavy chain of the complex is a severe complication in patients receiving prolonged hemodialysis. As a consequence of renal failure, the increasing beta2m concentrations can lead to deposition of the protein as amyloid fibrils. Here we characterize the His31-->Tyr human beta2m mutant, a non-natural form of beta2m that is more stable than the wild-type protein, displaying a ten-fold acceleration of the slow phase of folding. We report the 2.9A resolution crystal structure and the NMR characterization of the mutant beta2m, focussing on selected structural features and on the molecular packing observed in the crystals. Juxtaposition of the four mutant beta2m molecules contained in the crystal asymmetric unit, and specific hydrogen bonds, stabilize a compact protein assembly. Conformational heterogeneity of the four independent molecules, some of their mutual interactions and partial unpairing of the N-terminal beta-strand in one protomer are in keeping with the amyloidogenic properties displayed by the mutant beta2m.  相似文献   

8.
MR1 is a major histocompatibility complex (MHC) class I-related gene conserved among mammals, and its predicted amino acid sequence is relatively closer to the classical MHC class I molecules among several divergent class I molecules. However, as its molecular nature and function have not yet been clarified, we set out in this study to establish transfected P388 murine cell lines that stably produce a large number of MR1 proteins and conducted analyses to investigate the molecular nature of MR1. Immunoprecipitation and Western blot analyses with specific antisera revealed that the MR1 protein can associate with beta(2)-microglobulin, suggesting its molecular form of a typical class I heterodimer composed of a heavy and a light chain (beta(2)-microglobulin), like the classical MHC class I molecules.  相似文献   

9.
beta(2)-Microglobulin (beta2-m), a light chain of the major histocompatibility complex class I, forms amyloid fibrils in patients undergoing long-term haemodialysis, causing dialysis-related amyloidosis. Based on a comparison of the X-ray structure obtained at pH 5.7 and that of beta2-m in the histocompatibility complex, it has been proposed that the continuous D-strand observed in the crystal structure at pH 5.7 increases the propensity of beta2-m to self-associate via edge-to-edge interactions, thus initiating the formation of fibrils. To obtain further insight into the mechanism by which amyloid fibrils form, we determined the crystal structure of beta2-m at pH 7.0 at a resolution of up to 1.13 A. The crystal structure at pH 7.0 was basically the same as that at pH 5.6, suggesting that the conversion of the beta-bulge in strand D into a contiguous beta-strand is not unique to the crystals formed under slightly acidic conditions. In other words, although the formation of beta2-m fibrils was enhanced under acidic conditions, it remains unknown if it is related to the increased propensity for the disappearance of the beta-bulge in strand D. We consider that the enhanced fibrillation is more directly coupled with the decreased stability leading to the increased propensity of exposing amyloidogenic regions.  相似文献   

10.
Biosynthesis of HLA class I antigens has been studied in a variant B-LCLxT-LCL hybrid, 174XCEM.T2. This cell line encodes HLA-A2 and -B5, but expresses only small amounts of A2 antigen and undetectable B5 antigen at the cell surface due to a mutation inactivating a trans-acting regulatory gene encoded within the class II region of the human major histocompatibility complex. Northern blot analysis with HLA-A- and HLA-B-specific probes shows that 174XCEM.T2 synthesizes quantities of A and B locus mRNA comparable with its class I antigen-positive parent cell line. Immune precipitation studies indicate that 174XCEM.T2 synthesizes normal HLA heavy chains and beta 2-microglobulin which fail to form dimers. The heavy chains are N-glycosylated normally, but processing of the glycan to the complex form does not occur. In addition, free heavy chains in this cell line are not phosphorylated. Thus, the majority of class I heavy chains in 174XCEM.T2 do not combine with beta 2-microglobulin, and are not processed or transported to the cell surface. As both subunits are synthesized in normal amounts, we propose that an additional molecule absent from 174XCEM.T2 and encoded by an HLA-linked gene is necessary for efficient assembly of class I antigen subunits.  相似文献   

11.
Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2-microglobulin, and peptide.  相似文献   

12.
Heterodimeric class I major histocompatibility complex (MHC) molecules consist of a putative 45-kDa heavy chain and a 12-kDa beta2-microglobulin (beta2m) light chain. The knowledge about MHC genes in Atlantic salmon accumulated during the last decade has allowed us to generate soluble and stable MHC class I molecules with biological activity. We report here the use of a bacterial expression system to produce the recombinant single-chain MHC molecules based on a specific allele Sasa-UBA*0301. This particular allele was selected because previous work has shown its association with the resistance to infectious salmon anaemia virus. The single-chain salmon MHC class I molecule has been designed and generated, in which the carboxyl terminus of beta2m is joined together with a flexible 15 or 20 amino acid peptide linker to the amino terminus of the heavy chain (Sasabeta2mUBA*0301). Monoclonal antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC molecules by biosensor analysis. This production of sufficient amounts of class I MHC proteins may represent a useful tool to study the peptide-binding specificity of MHC class I molecules, in order to design a peptide vaccine against viral pathogens.  相似文献   

13.
The CD8 coreceptor of cytotoxic T lymphocytes binds to a conserved region of major histocompatibility complex class I molecules during recognition of peptide-major histocompatibility complex (MHC) class I antigens on the surface of target cells. This event is central to the activation of cytotoxic T lymphocyte (CTL) effector functions. The contribution of the MHC complex class I light chain, beta(2)-microglobulin, to CD8alphaalpha binding is relatively small and is mediated mainly through the lysine residue at position 58. Despite this, using molecular modeling, we predict that its mutation should have a dramatic effect on CD8alphaalpha binding. The predictions are confirmed using surface plasmon resonance binding studies and human CTL activation assays. Surprisingly, the charge-reversing mutation, Lys(58) --> Glu, enhances beta(2)m-MHC class I heavy chain interactions. This mutation also significantly reduces CD8alphaalpha binding and is a potent antagonist of CTL activation. These results suggest a novel approach to CTL-specific therapeutic immunosuppression.  相似文献   

14.
Although native beta(2)-microglobulin (beta2-m), the light chain of the major histocompatibility complex class I antigen, assumes an immunoglobulin domain fold, it is also found as a major component of dialysis-related amyloid fibrils. In the amyloid fibrils, the conformation of beta2-m is considered to be largely different from that of the native state, and a monomeric denatured form is likely to be a precursor to the amyloid fibril. To obtain insight into the conformational dynamics of beta2-m leading to the formation of amyloid fibrils, we studied the reduction and reoxidation of the disulfide bond by reduced and oxidized dithiothreitol, respectively, and the effects on the reduction of the chaperonin GroEL, a model protein that might destabilize the native state of beta2-m. We show that beta2-m occasionally unfolds into a denatured form even under physiological conditions and that this transition is promoted upon interaction with GroEL. The results imply that in vivo interactions of beta2-m with other proteins or membrane components could destabilize its native structure, thus stabilizing the amyloid precursor.  相似文献   

15.
Purified class I histocompatibility antigens (SLA) from three haplotypes were prepared by papain treatment of lymphoid cell membranes obtained from spleens and lymph nodes of miniature swine homozygous at their major histocompatibility complex. Antigens were purified by ion-exchange chromatography followed by gel filtration. Purity was analyzed by SDS-PAGE, and antigenic specificity by inhibition of complement-dependent, alloantiserum-mediated cytotoxicity. The SLA antigens were reduced and alkylated, and the component heavy and light chains were isolated by gel filtration under dissociating conditions. N-terminal amino acid sequences were obtained for SLAaa, SLAcc, and SLAdd heavy chains, as well as for the light chain, beta 2-microglobulin. The swine antigens showed high levels of homology with class I antigens from other animal species. Heterogeneity was observed among the swine haplotypes, and several of the positions at which substitutions were found are apparently invariant in other animal species. In contrast, only minimal sequence heterogeneity was detected within haplotypes, the basis of which may be of relevance to understanding the evolutionary development of these molecules.  相似文献   

16.
The major histocompatibility complex class I molecules consist of three subunits, the 45-kDa heavy chain, the 12-kDa beta(2)-microglobulin (beta(2)m), and an approximately 8-9-residue antigenic peptide. Without beta(2)m, the major histocompatibility complex class I molecules cannot assemble, thereby abolishing their transport to the cell membrane and the subsequent recognition by antigen-specific T cells. Here we report a case of defective antigen presentation caused by the expression of a beta(2)m with a Cys-to-Trp substitution at position 25 (beta(2)m(C25W)). This substitution causes misfolding and degradation of beta(2)m(C25W) but does not result in complete lack of human leukocyte antigen (HLA) class I molecule expression on the surface of melanoma VMM5B cells. Despite HLA class I expression, VMM5B cells are not recognized by HLA class I-restricted, melanoma antigen-specific cytotoxic T lymphocytes even following loading with exogenous peptides or transduction with melanoma antigen-expressing viruses. Lysis of VMM5B cells is restored only following reconstitution with exogenous or endogenous wild-type beta(2)m protein. Together, our results indicate impairment of antigenic peptide presentation because of a dysfunctional beta(2)m and provide a mechanism for the lack of close association between HLA class I expression and susceptibility of tumor cells to cytotoxic T lymphocytes-mediated lysis in malignant diseases.  相似文献   

17.
We report here that the expression of major histocompatibility complex (MHC) class I heavy chains not associated with beta 2-microglobulin is induced on resting human T cells by a variety of stimuli. These beta 2m-free class I heavy chains are not transported as such from the endoplasmic reticulum but originate from surface beta 2m-associated MHC class I molecules. beta 2m-free class I heavy chains are spontaneously released from the surface of activated cells. Cross-linking of beta 2m-free class I heavy chains with specific monoclonal antibodies results in the rapid down-regulation and internalization of these molecules. In contrast, beta 2m-associated MHC class I molecules display a different pattern of modulation. Previously, we reported that beta 2m-free class I heavy chains interact with CD8 molecules expressed on the same activated T cells. We propose that interactions between these molecules are involved in a mechanism regulating the function of activated T cells.  相似文献   

18.
Gakamsky DM  Davis DM  Strominger JL  Pecht I 《Biochemistry》2000,39(36):11163-11169
Class I major histocompatibility complex (MHC) heterodimer, composed of human leukocyte antigen (HLA)-A2 heavy chain and human beta(2)-microglobulin (beta(2)m), was produced by denaturation and gel filtration of the recombinant water-soluble HLA-A2/beta(2)m/peptide ternary complex in 8 M urea Tris-HCl buffer, followed by refolding of the separated chains without peptide. Peptide affinity and kinetics of the ternary complex formation and dissociation were investigated in real time by monitoring the fluorescence resonance energy transfer (FRET) from intrinsic HLA-A2 heavy-chain tryptophans to a dansyl fluorophore conjugated to the bound peptide. Peptide binding to the heterodimer was a second order process with rate constants linearly dependent upon temperature in Arrhenius coordinates over 0-20 degrees C. The binding rate constant of pRT6C-dansyl [ILKEPC(dansyl)HGV] at 37 degrees C evaluated by extrapolation of the Arrhenius plot was (2.0 +/- 0.5) x 10(6) M(-1) s(-1). Association of the heavy chain with beta(2)m was a first order process, apparently controlled by a conformational transition in the heavy chain. One of these conformations bound to beta(2)m to form the heavy chain/beta(2)m heterodimer whereas the second conformer oligomerized. Peptide dissociation from the ternary complex was a first-order reaction over the temperature range 20-37 degrees C, suggesting that the ternary complex also exists in two conformations. Taken together, the present data suggest that association of beta(2)m changes the HLA-A2 heavy-chain conformation thereby promoting peptide binding. Peptide dissociation from the ternary complex induces dissociation of the heavy-chain/beta(2)m heterodimer thereby causing oligomerization of the heavy chain. The lability of the HLA-A2/beta(2)m heterodimer and the strong tendency of the "free" heavy chain to oligomerize may provide an efficient mechanism for control of antigen presentation under physiological conditions by reducing the direct loading of HLA with exogenous peptide at the cell surface.  相似文献   

19.
The class I major histocompatibility (MHC) molecule is a heterotrimer composed of a heavy chain, the small subunit beta(2)-microglobulin (beta(2)m), and a peptide. Fluorescence anisotropy has been used to assay the interaction of a labeled peptide with a recombinant, soluble form of the class I MHC HLA-A2. Consistent with earlier work, peptide binding is shown to be a two-step process limited by a conformational rearrangement in the heavy chain/beta(2)m heterodimer. However, we identify two pathways for peptide dissociation from the heterotrimer: (1) initial peptide dissociation leaving a heavy chain/beta(2)m heterodimer and (2) initial dissociation of beta(2)m, followed by peptide dissociation from the heavy chain. Eyring analyses of rate constants measured as a function of temperature permit for the first time a complete thermodynamic characterization of peptide binding. We find that in this case peptide binding is mostly entropically driven, likely reflecting the hydrophobic character of the peptide binding groove and the peptide anchor residues. Thermodynamic and kinetic analyses of peptide-MHC interactions as performed here may be of practical use in the engineering of peptides with desired binding properties and will aid in the interpretation of the effects of MHC and peptide substitutions on peptide binding and T cell reactivity. Finally, our data suggest a role for beta(2)m in dampening conformational dynamics in the heavy chain. Remaining conformational variability in the heavy chain once beta(2)m has bound may be a mechanism to promote promiscuity in peptide binding.  相似文献   

20.
Murine, rat, rabbit and guinea pig class I heavy chains, which do not react with W6/32 monoclonal antibody when they are expressed in association with autologous beta 2-microglobulin (beta 2-m), can acquire such a reactivity once they are expressed at the surface of cells cultured in conditions which allow their association with bovine beta 2-m. Sequence comparison of beta 2-ms suggests that glutamine at position 89 might be critical for the induction of the W6/32 defined antigenic determinant. However, in the murine species, certain class I heavy chains, in spite of their association with bovine beta 2-m, do not express this determinant. Using genetically engineered hybrid class I molecules and selected congenic strains of mice this negative property was shown to be related to the presence of a cysteine residue at position 121 which allows covalent association of beta 2-m to class I heavy chains (Bushkin, Y., J-S. Tung, A. Pinter, J. Michaelson, and E. A. Boyse. 1986. Unusual association of beta 2-microglobulin with certain class I heavy chains of the murine major histocompatibility complex. Proc. Natl. Acad. Sci. USA 83:432). Therefore, expression of the W6/32 defined antigenic determinant implicates both the beta 2-m and the second domain of the heavy chain, but its expression (or exposure) is prevented by the covalent fixation on cysteine 121 of the light chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号