首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of four tetrapeptides, L-Phe-L-Pro-Gly-Gly, Gly-L-Pro-L-Phe-Gly, Gly-L-Pro-D-Phe-Gly, and Gly-L-Pro-Gly-L-Phe is described. The hydrogen ion and copper(II) complex formation constants have been measured at 25°C and I = 0.10 mol dm?3 (KNO3). Circular dichroism spectra have been recorded for copper(II)-peptide mixtures as a function of pH. The potentiometric and Spectrophotometric studies have been combined to ascertain the complex species over a broad pH range. The results obtained support the earlier suggestion on the specific role of a proline residue as a “break-point” in copper complex formation with peptides: the insertion of a proline residue into the second position of a tetrapeptide sequence leads to a novel coordination mode in Cu(II)-tetrapeptide systems.  相似文献   

2.
A thorough spectral investigation of the copper(II) complex of the antitumor compound, bleomycin, has been carried out in solution employing optical, difference optical, electron spin resonance, and circular dichroism techniques. The optical spectrum of a pH = 7 solution of the 1:1 complex between copper(II) and bleomycin is characterized by a broad weak band in the visible region (λmax = 610 nm) that cannot be resolved and intense ultraviolet bands at 317 (? = 2800), 327 (shoulder), 250 (? = 4700), and 257 nm (shoulder). The circular dichroism spectrum in the visible region shows the broad and weak visible absorption band contains at least three components (558, 675, and 880 nm) that are likely to be “d-d” in origin. The electron spin resonance spectrum is characteristic of a tetragonal d9 copper(II) system showing no rhombic distoritions at X-band frequencies (gx = gy ± 0.002). The spin Hamiltonian parameters for the pH = 7.0 solution corrected for second order effects are A = 177 × 10?4 cm?1, A ? 15 × 10?4 cm?1, g = 2.214, g = 2.039. Most interesting was the observation of extra hyperfine splitting due to endogenous nitrogen coordination in a 30% glycerol glass (AN = 12.0 × 10?4 cm?1). That pattern is best interpreted as a seven-line sequence associated with three liganded nitrogens. A dramatic change in all spectral properties occurs when the pH of the copper(II)-bleomycin complex is lowered to 2.5. All these data taken together suggest a CuN3O coordination complex in solution. Details and justifications as well as a discussion of the limitations of the interpretations are presented.  相似文献   

3.
The interaction of copper(II)–ibuprofenato complex with calf thymus DNA (ct-DNA) has been explored following, UV-visible spectrophotometry, fluorescence measurement, dynamic viscosity measurements, and circular dichroism spectroscopy. In spectrophotometric studies of ct-DNA it was found that [Cu(ibp)2]2 can form a complex with double-helical DNA. The association constant of [Cu(ibp)2]2 with DNA from UV-Vis study was found to be 6.19 × 104 L mol?1. The values of Kf from fluorescence measurement clearly underscore the high affinity of [Cu(ibp)2]2 to DNA. The experimental results showed that the conformational changes in DNA helix induced by [Cu(ibp)2]2 are the reason for the fluorescence quenching of the DNA-Hoechst system. In addition, the fluorescence emission spectra of intercalated methylene blue (MB) with increasing concentrations of [Cu(ibp)2]2 represented a significant increase of MB intensity as to release MB from MB-DNA system. The results of circular dichroism (CD) suggested that copper(II)–ibuprofenato complex can change the conformation of DNA. In addition, the results of viscosity measurements suggest that copper(II)–ibuprofenato complex may bind with non-classical intercalative mode. From spectroscopic and hydrodynamic studies, it has been found that [Cu(ibp)2]2 interacts with DNA by partial intercalation mode which contains intercalation and groove properties.  相似文献   

4.
The results are reported of a spectroscopic and potentiometric study of the copper(II) and nickel(II) complexes of the thyrotropin releasing factor (L-pyroglutamyl-L-histidyl-L-prolinamide, TRF) and some of its di- and tripeptide analogues Spectroscopic techniques used include absorption, circular dichroism and electron paramagnetic resonance spectroscopy TRF and pyroglutamyl-histidine behave similarly. At low pH the metal ions coordinate to the imidazole nitrogen and then cause the ionization of the amide protons of both the peptide linkage and the pyroglutamic acid with equal ease. Hence the concentration of MH?1 L species is always very low. The C-terminal proline amide residue plays an insignificant role in the complex formation Replacement of pyroglutamic acid with picolinic acid in the hormone molecule causes a major change in the structures of its complexes. The dipeptide analogue, Pic-His. forms dimeric species with Cu(II) that are not found in Cu(II) Pyr-His orCu(II) TRF solutions The introduction of tyrosine residue in the TRF sequence in place of histidine can, in some cases, lead to the direct involvement of proline amide in the binding of metal ions, e.g. , Ni(II) Pyr-Tyr-Pro-NH2  相似文献   

5.
Cu2+ ion determinations were carried out in complex and in inorganic salts-glycerol media, to which increasing amounts of Cu(II) had been added, with the ion-specific Cu(II)-Selectrode. Likewise, complexing capacity of bacterial suspensions was estimated by titration with CuSO4.Copper-sensitive bacteria, e.g.,Klebsiella aerogenes, were inhibited in their growth and survival in the range of 10–8–10–6 M Cu2+ ion concentrations. In copper-buffered complex media, high copper loads could be tolerated, as growth proceeded with most of the copper bound to medium components. In low-complexing mineral salts media, in which high Cu2+ ion concentrations exist at low copper loads, there was competition of Cu2+ for binding sites of the cells. Total allowed copper was then determined by the ratio of copper to biomass.Copper-resistant bacteria could be isolated from a stock solution of CuSO4, containing 100 ppm Cu(II). They were of thePseudomonas type and showed a much higher tolerance towards Cu2+, up to 10–3 M.  相似文献   

6.
The synthesis of three tetrapeptides, Gly-Pro-Gly-Tyr. Gly-Pro-Tyr-Gly. and Tyr-Pro-Gly-Gly, are described. All contain proline as the second amino acid subunit to act as a break point in metal complex formation.The proton and copper(II) complex formation constants have been measured at 22°C and l = 0.10 mol dm?3 (KNO3). The copper(II) complexes have also been studied spectrophotometrically over the pH range of 6–11 by absorption spectroscopy (800–200 nm), circular dichroism spectroscopy, and electron paramagnetic resonance spectroscopy. The experimental data have been combined to determine the complex species present as a function of pH and the coordination centers used.  相似文献   

7.
The porphyrin, meso-5-(pentafluorophenyl)-10, 15, 20-tris(4-pyridyl)porphyrin has been used to synthesize two new metalloporphyrin complexes. Insertion of copper(II) into the porphyrin center gives the copper(II) porphyrin. Coordination of three [Ru(bipy)2Cl]+ moieties (where bipy = 2,2′-bipyridine) to the pyridyl nitrogens of the copper(II) porphyrin gives the target complex. Electronic transitions associated with the copper(II) porphyrin and the triruthenium copper(II) porphyrin include an intense Soret band and a less intense Q-band in the visible region of the spectrum. An intense π-π∗ transition in the UV region associated with the bipyridyl groups and a metal to ligand charge transfer (MLCT) band appearing as a shoulder to the Soret band are observed for the ruthenated copper(II) porphyrin. Electrochemical properties associated with the multimetallic complex include a redox couple in the cathodic region with E1/2 = −0.86 V versus Ag/AgCl attributed to the porphyrin and a redox couple in the anodic region E1/2 = 0.88 V versus Ag/AgCl due to the RuIII/II couple. DNA titrations indicate the triruthenium copper(II) porphyrin interacts with DNA potentially through a groove binding mechanism. Irradiation of aqueous solutions of the target complex and supercoiled DNA at a 10:1 base pair to complex ratio with visible light above 400 nm indicates that the complex causes nicking of the DNA helix.  相似文献   

8.
Abstract

Azo linked salicyldehyde and a new 2-hydroxy acetophenone based ligands (HL1 and HL2) with their copper(II) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized and characterized by spectroscopic methods such as 1H, 13C NMR, UV–Vis spectroscopy and elemental analyses. Calculation based on Density Functional Theory (DFT), have been performed to obtain optimized structures. Binding studies of these copper (II) complexes with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) were analyzed by absorption spectra, emission spectra and Viscosity studies and Molecular Docking techniques. The absorption spectral study indicated that the copper(II) complexes of 1 and 2 had intrinsic binding constants with DNA or RNA in the range of 7.6?±?0.2?×?103?M?1 or 6.5?±?0.3?×?103M?1 and 5.7?±?0.4?×?104 M?1 or 1.8?±?0.5?×?103 M?1 respectively. The synthesized compounds and nucleic acids were simulated by molecular docking to explore more details mode of interaction of the complexes and their orientations in the active site of the receptor.  相似文献   

9.
Aims: To investigate the effect of lactic acid (LA), copper (II), and monolaurin as natural antimicrobials against Cronobacter in infant formula. Methods and Results: The effect of LA (0·1, 0·2 and 0·3% v/v), copper (II) (10, 50 and 100 μg ml?1) and monolaurin (1000, 2000, and 3000 μg ml?1) suspended into tween‐80? or dissolved in ethanol against Cronobacter in infant formula was investigated. Reconstituted infant formula and powdered infant formula were inoculated with five strains of Cronobacter spp. at the levels of c. 1 × 106 CFU ml?1 and 1 × 103 CFU g?1, respectively. LA at 0·2% v/v had a bacteriostatic effect on Cronobacter growth, whereas 0·3% v/v LA resulted in c. 3 log10 reduction. Copper (II) at the levels of 50 μg ml?1 and 100 μg ml?1 elicited c. 1 and 2 log10 reductions, respectively. The combination of 0·2% LA and 50 μg ml?1 copper (II) resulted in a complete elimination of the organism. Monolaurin exhibited a slight inhibitory activity against Cronobacter (c. 1·5 log10 difference) compared to the control when ethanol was used to deliver monolaurin. Conclusions: A complete elimination of Cronobacter was obtained when a combination of sublethal concentrations of LA (0·2%) and copper (II) (50 μg ml?1) was used. Significance and Impact of the Study: The use of the synergistic interactive combination of LA and copper (II) could be beneficial to control Cronobacter in the infant formula industry.  相似文献   

10.
The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO4)2] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (Kb) was determined as 1.25 × 104 M?1, which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.  相似文献   

11.
Two new μ-oxamido-bridged binuclear copper(II) complexes with formulae of [Cu2(heae)(pic)2] (1) and [Cu2(heae)(Me2phen)2](ClO4)2 · H2O (2), where heae and pic stand for the anion of N,N′-bis(N-hydroxyethylaminoethyl)oxamide and 2,4,6-trinitrophenol, respectively, and Me2phen represents 2,9-dimethyl-1,10-phenanthroline; have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR and electronic spectra studies. The crystal structures of the two binuclear copper(II) complexes have been determined by X-ray single-crystal diffraction. In both the two binuclear complexes the central two copper(II) atoms are bridged by trans-heae. In complex 1 the coordination environment around each copper(II) atom can be described as a distorted octahedral geometry, while in complex 2 each copper(II) atom displays a square-pyramid stereochemistry. Hydrogen bonding and π-π stacking interactions link the binuclear copper(II) complex 1 or 2 into a 3D infinite network. The cytotoxicities of the two binuclear copper(II) complexes were tested by Sulforhodamine B (SRB) assays against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549. Both of the two binuclear copper(II) complexes exhibit potent cytotoxic effects against SMMC-7721 and A549 cell lines. The interactions of the two binuclear complexes with herring sperm DNA (HS-DNA) are investigated by using absorption and emission spectra and electrochemical techniques and viscometry. The results suggest that both the two binuclear copper(II) complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 1.73 × 105 M−1 (1) and 1.92 × 106 M−1 (2). The influence of structural variation of the terminal ligands in the binuclear complexes on DNA-binding properties is preliminarily discussed.  相似文献   

12.
Serum albumins being the most abundant proteins in the blood and cerebrospinal fluid are significant carriers of essential transition metal ions in the human body. Studies of copper (II) complexes have gained attention because of their potential applications in synthetic, biological, and industrial processes. Study of binding interactions of such bioinorganic complexes with serum albumins improves our understanding of biomolecular recognition process essential for rational drug design. In the present investigation, we have applied quantitative approach to explore interactions of novel synthesized copper (II) complexes viz. [Cu(L1)(L2)ClO4] (complex I), [Cu(L2)(L3)]ClO4] (complex II) and [Cu(L4)2(H2O)2] (complex III) with bovine serum albumin (BSA) to evaluate their binding characteristics, site and mode of interaction. The fluorescence quenching of BSA initiated by complexation has been observed to be static in nature. The binding interactions are endothermic driven by entropic factors as confirmed by high sensitivity isothermal titration calorimetry. Changes in secondary and tertiary structure of protein have been studied by circular dichroism and significant reduction in α-helical content of BSA was observed upon binding. Site marking experiments with warfarin and ibuprofen indicated that copper complexes bind at site II of the protein.  相似文献   

13.
The reaction of the tripod ligand hydrotris(2-mercapto-1-imidazolyl)borate Tmxylyl with zinc(II) perchlorate in methanol afforded the mononuclear complex of the type [Tmxylyl-Zn(mimxylyl)]ClO4 (1). Whereas under the same conditions, the reaction with copper(II) perchlorate gives rise to the simultaneous formation of the dinuclear copper(I) complex [TmxylylCu]2 (2). The chemical formulae of the complexes have been characterized by elemental chemical analysis, IR-NMR spectroscopies, and single crystal X-ray methods. In complex 1, the zinc(II) atom displays a distorted tetrahedral environment. While in complex 2, the Tmxylyl ligand bridges the two copper(I) atoms in an asymmetric manner with trigonal geometry. The inverted conformation of the ligand Tmxylyl at the boron center, allows the B-H units to be directed towards the copper centers. The greater reactivity of the borohydride groups towards metal centers enhances the reduction of Cu(II) to Cu(I). The obtained kinetic results for the methylation reactions of 1 and 2 indicate that these bound thione complexes are less suitable to electrophilic attack than the thiolate ligand.  相似文献   

14.
The alleviative effects of exogenous calcium on copper phytotoxicity were investigated in Elodea canadensis plants. There was a significant accumulation of Cu in the plants after their exposure to 0.01 mM Cu accompanied by many symptoms of toxicity. Increased uptake of Cu severely reduced content of photosynthetic pigments, soluble proteins, and free proline. The total antioxidant capacity (T-AOC), reduced glutathione (GSH), and non-protein thiol (NP-SH) were severely suppressed in Cu-stressed plants resulting in a rapid increase in content of superoxide anion (O2 ·?), hydrogen peroxide, lipid peroxidation, and cell death. Simultaneous application of Ca markedly increased the content of photosynthetic pigments, soluble proteins, free proline, T-AOC, GSH, and NP-SH, and reduced oxidative damage as indicated by lowered content of MDA, O2 ·?, and H2O2; and decreased cell death. Furthermore, application of Ca reduced Cu uptake and effectively reversed the Cu-induced nutrient imbalance.  相似文献   

15.
A novel binuclear copper(II) complex [Cu2L(μ-SO4)](PF6)2 (1) (L = 3,5-bis (bis(pyridine-2-ylmethyl)amino)methyl)-4H-1,2,4-triazol-4-amine) has been synthesized and structurally characterized. X-ray structure shows that the two copper(II) atoms are bridged by one bidentate sulfate ion and the 1,2,4-triazole ring of L with Cu1?Cu2 distance of 4.404 Å. Each copper(II) center has a distorted trigonal-bipyramidal configuration. Variable-temperature magnetic susceptibility studies (2-300 K) indicate the existence of weak antiferromagnetic coupling between the copper(II) ions in complex 1. The interaction of complex 1 with calf thymus DNA (CT-DNA) has been studied by UV absorption, fluorescence spectroscopy, circular dichroism spectroscopy, viscosity and cyclic voltammetry. Furthermore, complex 1 was able to promote single and double strand DNA cleavage in both aerobic and anaerobic conditions, the pseudo-Michaelis-Menten kinetic parameters kcat = 2.58 h−1 and Km = 1.2 × 10−4 M were obtained for 1. The hydrolytic cleavage of DNA by the complex was supported by the evidence from free radical quenching, anaerobic experiment, thiobarbituric acid-reactive substances (TBARS) assay.  相似文献   

16.
The title ligand, N-(2-hydroxyphenyl)methyl-bis-(2-pyridylmethyl)amine, was prepared via a condensation-reduction synthetic route. The compounds, CuCl(C19H19N3O) and [CuBr(C19H19N3O)]+Br · 3H2O, were readily synthesized from the reaction of CuCl or CuBr2 and the ligand in acetonitrile. The title copper(I) compound is an O-H ? Cl hydrogen-bonded linear chain of tetrahedrally coordinated copper centers, and the title copper(II) compound exists as two strongly tetragonally distorted dibromide bridged metal cations in a dimer with the phenol hydroxyl groups weakly bound in a trans-fashion to one of the bridging bromides. In the copper(I) complex the phenoxy group acts only as a hydrogen bond donor, whereas in the copper(II) complex it acts both as a ligand and a hydrogen bond donor.  相似文献   

17.
18.
A new ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope) ligand has been synthesized and used for synthesis of copper(II) and zinc(II) complexes of the formula [MCl2(2-bis(pm)Ope)] [M = Cu(II), Zn(II)]. Despite having the same general formula, Cu(II) and Zn(II) complexes are not isostructural. The Zn(II) complex is four coordinated (MCl2N2) forming probably tetrahedral structure whereas the Cu(II) complex of distorted square pyramidal geometry is five coordinated (MCl2ON2). The later compound not only coordinates by two nitrogen atoms of pyridine rings but also by the oxygen atom of pyridin-2-ylmethoxyl residue. The compound (2-bis(pm)Ope) has been obtained as the product of diethyl (pyridin-2-ylmethyl)phosphate’s (2-pmOpe) transestrification. The compounds have been identified and characterized by IR, far-IR, 1H NMR, 31P NMR and elemental analyses. The crystal structure of copper(II) complex i.e. [CuCl2(2-bis(pm)Ope)] has been determined by the X-ray diffraction method. The low temperature magnetic study reveals significant antiferromagnetic interaction between copper centers through the H-bond system.  相似文献   

19.
The possible time- and/or light-dependent decomposition of the purple Cu(I), Cu(II)-complex of D-penicillamine (Cu(II)6Cu(I)8(D-penicillamine)12Cl)5? was examined. Superoxide dismutase activity of the freshly prepared complex was assayed using the nitroblue tetrazolium assay. The formazan colour formation was inhibited by 50% in the presence of approximately 500 μM copper. Ageing of the copper complex, especially in the light, resulted in a marked increase of EDTA-sensitive activity. Upon gel chromatography of the aged samples the original low inhibitory activity was restored. All EDTA-sensitive inhibitory activity was found in a clearly separated low Mr copper-containing fraction. Aerobic irradiation with a tungsten lamp at 30 °C accelerated the decomposition of (Cu(II)6Cu(I)8(D-penicillamine)12Cl)5?. ?Cu518 = 1800 M?1 cm?1 dropped to ?Cu640 = 60 M?1 cm?1. The photochemical conversion of (Cu(II)6? Cu(I)8(D-penicillamine)12Cl)5? was complete within 48 h. Due to the identical electronic absorption profile of both, the decomposition product and Cu(II) D-penicillamine disulphide the latter complex was assigned to be the unknown low Mr copper-compound. Circular dichroism and electron paramagnetic resonance measurements support this conclusion.  相似文献   

20.
The present study suggests the involvement of proline in copper tolerance of four genotypes of Cicer arietinum (chickpea). Based on the data of tolerance index and lipid peroxidation, the order for copper tolerance was as follows: RSG 888?>?CSG 144?>?CSG 104?>?RSG 44 in the selected genotypes. The basis of differential copper tolerance in chickpea genotypes was characterized by analyzing, antioxidant enzymes (superoxide dismutase, ascorbated peroxidase and catalase), phytochelatins, copper uptake, and proline accumulation. Chickpea genotypes showed stimulated superoxide dismutase activity at all tested concentrations of copper, but H2O2 decomposing enzymes especially; ascorbate peroxidase did not increase with 25 and 50 μM copper treatments. Catalase activity, however, increased at lower copper concentrations but failed to stimulate at 50 μM copper. Such divergence in responses of these enzymes minimizes their importance in protecting chickpea against copper stress. The sensitive genotypes showed greater enhancement of phytochelatins than that of tolerant genotypes. Hence, the possibility of phytochelatins in improving copper tolerance in the test plant is also excluded. Interestingly, the order of proline accumulation in the chickpea genotypes (RSG 888?>?CSG 144?>?CSG 104?>?RSG 44) was exactly similar to the order of copper tolerance. Based on hyperaccumulation of proline in tolerant genotype (RSG 44) and the reduction and improvement of lipid peroxidation and tolerance index, respectively, by proline pretreatment, we conclude that hyperaccumulation of proline improves the copper tolerance in chickpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号