首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

2.
Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) I and IV are activated upon phosphorylation of their Thr(177) and Thr(196), respectively, by the upstream Ca(2+)/calmodulin-dependent protein kinases CaM-kinase kinase alpha and beta, and deactivated upon dephosphorylation by protein phosphatases such as CaM-kinase phosphatase. Recent studies demonstrated that the activity of CaM-kinase kinase alpha is decreased upon phosphorylation by cAMP-dependent protein kinase (PKA), and the relationship between the inhibition and phosphorylation of CaM-kinase kinase alpha by PKA has been studied. In the present study, we demonstrate that the activity of CaM-kinase kinase alpha toward PKIV peptide, which contains the sequence surrounding Thr(196) of CaM-kinase IV, is increased by incubation with PKA in the presence of Ca(2+)/calmodulin but decreased in its absence, while the activity toward CaM-kinase IV is decreased by incubation with PKA in both the presence and absence of Ca(2+)/calmodulin. Six phosphorylation sites on CaM-kinase kinase alpha, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA, were identified by amino acid sequence analysis of the phosphopeptides purified from the tryptic digest of the phosphorylated enzymes. The presence of Ca(2+)/calmodulin suppresses phosphorylation on Ser(52), Ser(74), Thr(108), and Ser(458) by PKA, but accelerates phosphorylation on Ser(475). The changes in the activity of the enzyme upon phosphorylation appear to occur as a result of conformational changes induced by phosphorylation on several sites.  相似文献   

3.
For a comparative study of immunological properties of protein-polymer conjugates, uricase was modified with (a) poly(N-vinylpyrrolidone) 6000 Da, (b) poly(N-acriloylmorpholine) 6000 Da, (c) branched monomethoxypoly(ethylene glycol) 10000 Da, and (d) linear monomethoxypoly(ethylene glycol) 5000 Da. Spectroscopic studies performed by UV, fluorescence, and circular dichroism did not show any relevant difference in protein conformation among the native and the conjugates. Immunological studies showed that both uricase antigenicity and immunogenicity were altered by polymer conjugation to an extent that depended upon the polymer composition; in particular, monomethoxypoly(ethylene glycol) 10000 Da remarkably reduced the protein antigenicity, while unexpectedly, the poly(N-vinylpyrrolidone) derivative presented higher antigenicity than the native protein. In Balb/c mice, the native protein elicited a rapid and intense immunoresponse whereas all the conjugates induced a lower production of anti-native uricase antibodies. The rank order of immunogenicity was native uricase > uricase-poly(N-vinylpyrrolidone) > or = uricase-poly(N-acriloylmorpholine) > uricase-monomethoxypoly(ethylene glycol) 5000 Da > uricase-monomethoxypoly(ethylene glycol) 10000 Da. The four conjugates also induced anti polymer immunoresponse. Anti poly(N-vinylpyrrolidone) and anti poly(N-acriloylmorpholine) antibodies were generated from the first immunization while low levels of anti polymer antibodies were found with both poly(ethylene glycol) conjugates only after the second immunization.  相似文献   

4.
We have studied the phosphorylation of the nuclear oncoprotein Fos by cyclic AMP-dependent protein kinase (PKA). We demonstrate that the human c-Fos protein, phosphorylated either in vitro with purified PKA or in vivo in JEG3 cells following treatment with forskolin, has similar phosphotryptic peptide maps. Serine 362, which constitutes part of a canonical PKA phosphorylation site (RKGSSS), is phosphorylated both in vivo and in vitro. A mutant of Fos protein in which serine residues 362 to 364 have been altered to alanine residues is not efficiently phosphorylated in vitro. Furthermore, Fos protein in which serines 362 to 364 have been altered to alanine shows increased transforming potential. We propose that phosphorylation of Fos by PKA is an important regulatory step in controlling its activity in normal cell growth and differentiation.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an apical membrane Cl- channel regulated by protein phosphorylation. To identify cAMP-dependent protein kinase (PKA)-phosphorylated residues in full-length CFTR, immobilized metal-ion affinity chromatography (IMAC) was used to selectively purify phosphopeptides. The greater specificity of iron-loaded (Fe3+) nitrilotriacetic (NTA). Sepharose compared to iminodiacetic acid (IDA) metal-chelating matrices was demonstrated using a PKA-phosphorylated recombinant NBD1-R protein from CFTR. Fe(3+)-loaded NTA Sepharose preferentially bound phosphopeptides, whereas acidic and poly-His-containing peptides were co-purified using the conventional IDA matrices. IMAC using NTA Sepharose enabled the selective recovery of phosphopeptides and identification of phosphorylated residues from a complex proteolytic digest. Phosphopeptides from PKA-phosphorylated full-length CFTR, generated in Hi5 insect cells using a baculovirus expression system, were purified using NTA Sepharose. Phosphopeptides were identified using matrix-assisted laser desorption mass spectrometry (MALDI/MS) with post-source decay (PSD) analysis and collision-induced dissociation (CID) experiments. Phosphorylated peptides were identified by mass and by the metastable loss of HPO3 and H3PO4 from the parent ions. Peptide sequence and phosphorylation at CFTR residues 660Ser, 737Ser, and 795Ser were confirmed using MALDI/PSD analysis. Peptide sequences and phosphorylation at CFTR residues 700Ser, 712Ser, 768Ser, and 813Ser were deduced from peptide mass, metastable fragment ion formation, and PKA consensus sequences. Peptide sequence and phosphorylation at residue 753Ser was confirmed using MALDI/CID analysis. This is the first report of phosphorylation of 753Ser in full-length CFTR.  相似文献   

6.
The involvement of CK1 (casein kinase 1) delta in the regulation of multiple cellular processes implies a tight regulation of its activity on many different levels. At the protein level, reversible phosphorylation plays an important role in modulating the activity of CK1delta. In the present study, we show that PKA (cAMP-dependent protein kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2) and PKC (protein kinase C) alpha all phosphorylate CK1delta. PKA was identified as the major cellular CK1deltaCK (CK1delta C-terminal-targeted protein kinase) for the phosphorylation of CK1delta in vitro and in vivo. This was implied by the following evidence: PKA was detectable in the CK1deltaCK peak fraction of fractionated MiaPaCa-2 cell extracts, PKA shared nearly identical kinetic properties with those of CK1deltaCK, and both PKA and CK1deltaCK phosphorylated CK1delta at Ser370 in vitro. Furthermore, phosphorylation of CK1delta by PKA decreased substrate phosphorylation of CK1delta in vitro. Mutation of Ser370 to alanine increased the phosphorylation affinity of CK1delta for beta-casein and the GST (gluthatione S-transferase)-p53 1-64 fusion protein in vitro and enhanced the formation of an ectopic dorsal axis during Xenopus laevis development. Anchoring of PKA and CK1delta to centrosomes was mediated by AKAP (A-kinase-anchoring protein) 450. Interestingly, pre-incubation of MiaPaCa-2 cells with the synthetic peptide St-Ht31, which prevents binding between AKAP450 and the regulatory subunit RII of PKA, resulted in a 6-fold increase in the activity of CK1delta. In summary, we conclude that PKA phosphorylates CK1delta, predominantly at Ser370 in vitro and in vivo, and that site-specific phosphorylation of CK1delta by PKA plays an important role in modulating CK1delta-dependent processes.  相似文献   

7.
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).  相似文献   

8.
Functionalized beads and particles in the size range of tens to hundreds of nanometers (nano- to meso-scale) are finding increased applications in the bioanalytical field. We show here that conjugates of streptavidin and the temperature-responsive polymer poly(N-isopropylacrylamide) (PNIPAAm), synthesized with low polydispersities by reversible addition--fragmentation chain transfer (RAFT) polymerization, rapidly formed mesoscale polymer--protein particles above the lower critical solution temperature (LCST). The average hydrodynamic diameters of these particles could be controlled between 250 nm to 900 nm by the choice of conjugate concentration and polymer molecular weight, and/or through control of the rate of temperature change. Once formed, the biohybrid particles were found to be stable for >16 h at the controlled size, unlike the free PNIPAAm which continued to aggregate and grow over time into very large and polydisperse aggregates. The reversibility between the smart polymer--protein particles and the free polymer--protein conjugates opens potential uses in traditional diagnostic formats and in microfluidic formats where the differential diffusive and physical properties might be exploited for separations, analyte concentration, and signal generation.  相似文献   

9.
Physiological stimulation of platelets with thrombin brings about the release of protein kinase A (PKA) into the plasma. In human blood, this kinase singles out and phosphorylates vitronectin (Vn), a multifunctional regulatory protein, which was proposed to play an important role in the control of fibrinolysis. Here we present immuno-cytochemical evidence to show: (i) that intact platelets possess on their surface an ecto-PKA which can preferentially phosphorylate Vn; (ii) that in the resting platelet, both the catalytic and the regulatory subunits of PKA are present on the platelet surface, in the surface-connected canalicular system, and within the alpha-granules of the platelets; (iii) that the process initiated upon platelet activation, which leads to the formation of fibrin fibers and consequently forms the fibrin net, is accompanied by a translocation of PKA, of Vn, and of PAI-1 onto the fibrin fibers. We propose that the localization and the translocation of these proteins in the fibrin net, together with our finding that PKA phosphorylation of Vn reduces its grip of PAI-1, can unleash PAI-1 in its free form. The free PAI-1 can then assume its latent (non inhibitory) conformation, allow plasminogen activators to trigger the formation of active plasmin, and to initiate fibrinolysis.  相似文献   

10.
Previously, D2 dopamine receptors (D2 DARs) have been shown to undergo G-protein-coupled receptor kinase phosphorylation in an agonist-specific fashion. We have now investigated the ability of the second messenger-activated protein kinases, protein kinase A (PKA) and protein kinase C (PKC), to mediate phosphorylation and desensitization of the D2 DAR. HEK293T cells were transiently transfected with the D2 DAR and then treated with intracellular activators and inhibitors of PKA or PKC. Treatment with agents that increase cAMP, and activate PKA, had no effect on the phosphorylation state of the D2 DAR, suggesting that PKA does not phosphorylate the D2 DAR in HEK293T cells. In contrast, cellular treatment with phorbol 12-myristate 13-acetate (PMA), a PKC activator, resulted in an approximately 3-fold increase in D2 DAR phosphorylation. The phosphorylation was specific for PKC as the PMA effect was mimicked by phorbol 12,13-dibutyrate, but not by 4alpha-phorbol 12,13-didecanoate, active and inactive, phorbol diesters, respectively. The PMA-mediated D2 DAR phosphorylation was completely blocked by co-treatment with the PKC inhibitor, bisindolylmaleimide II, and augmented by co-transfection with PKCbetaI. In contrast, PKC inhibition had no effect on agonist-promoted phosphorylation, suggesting that PKC is not involved in this response. PKC phosphorylation of the D2 DAR was found to promote receptor desensitization as reflected by a decrease in agonist potency for inhibiting cAMP accumulation. Most interestingly, PKC phosphorylation also promoted internalization of the D2 DAR through a beta-arrestin- and dynamin-dependent pathway, a response not usually associated with PKC phosphorylation of G-protein-coupled receptors. Site-directed mutagenesis experiments resulted in the identification of two domains of PKC phosphorylation sites within the third intracellular loop of the receptor. Both of these domains are involved in regulating sequestration of the D2 DAR, whereas only one domain is involved in receptor desensitization. These results indicate that PKC can mediate phosphorylation of the D2 DAR, resulting in both functional desensitization and receptor internalization.  相似文献   

11.
BACKGROUND: Successful non-viral gene targeting requires vectors to meet two conflicting needs-strong binding to protect the genetic material during transit and weak binding at the target site to enable release. Responsive polymers could fulfil such requirements through the switching of states, e.g. the chain-extended coil to chain-collapsed globule phase transition that occurs at a lower critical solution temperature (LCST), in order to transport nucleic acid in one polymer state and release it in another. METHODS: The ability of new synthetic polycations based on poly(ethyleneimine) (PEI) with grafted neutral responsive poly(N-isopropylacrylamide) (PNIPAm) chains to condense DNA into particles with architectures varying according to graft polymer LCST was assessed using a combination of fluorescence spectroscopy, dynamic light scattering (DLS), zeta sizing, gel retardation and atomic force microscopy studies. Transfection assays were conducted under experimental conditions wherein the polymer components were able to cycle across their LCST. RESULTS: Two PEI-PNIPAm conjugate polymers with different LCSTs displayed coil-globule transitions when complexed to plasmid DNA, leading to variations in molecular architecture as shown by changes in emission maxima of an environment-sensitive fluorophore attached to the PNIPAm chains. Gel retardation assays demonstrated differences in electrophoretic mobilities of polymer-DNA complexes with temperatures below and above polymer LCSTs. Atomic force micrographs showed changes in the structures of polymer-DNA complexes for a polymer undergoing a phase transition around body temperature but not for the polymer with LCST outside this range. Transfection experiments in C2C12 and COS-7 cells demonstrated that the highest expression of transgene occurred in an assay that involved a 'cold-shock' below polymer LCST during transfection. CONCLUSIONS: Designed changes in thermoresponsive polycation vector configuration via temperature-induced phase transitions enhanced transgene expression. The results indicate that changes in molecular architecture induced by a carefully chosen stimulus during intracellular trafficking can be used to enhance gene delivery.  相似文献   

12.
Wnts are secreted glycoproteins that control diverse biological processes, such as proliferation, differentiation, and apoptosis. We here found that Wnt5a inhibited apoptosis induced by serum deprivation in primary-cultured human dermal fibroblasts. Anti-apoptotic activity of Wnt5a was not inhibited by a dickkopf-1 (DKK), which blocks the canonical Wnt pathway. On the other hand, loss of function of protein kinase A (PKA), induced by treatment with PKA inhibitors, siRNA-mediated knocking down of endogenous PKA catalytic subunits, or enforced expression of dominant-negative PKA inhibited the Wnt5a anti-apoptotic activity, indicating the involvement of PKA in the Wnt5a anti-apoptotic activity. In agreement, phosphorylation levels of a cAMP response element binding protein (CREB), a representative downstream effector of PKA, the activation of which is known to lead to the pro-survival effects, was elevated by Wnt5a. In addition, Wnt5a increased the nuclear beta-catenin level and treatment with imatinib or ionomycin, either of which blocks the beta-catenin pathway, reduced the anti-apoptotic activity of Wnt5a, together suggesting the simultaneous involvement of the beta-catenin-mediated pathway in the Wnt5a anti-apoptotic activity. Based on another finding indicating that Wnt5a upregulated PKA-mediated phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) at serine 9 that caused inactivation of GSK-3beta and subsequently resulted in activation of the beta-catenin pathway, we have speculated that the Wnt5a anti-apoptotic activity may be partially mediated by PKA-mediated phosphorylation of GSK-3beta and subsequent activation of the beta-catenin pathway.  相似文献   

13.
Polymyxin peptide conjugated to the end groups of highly branched poly(N-isopropyl acrylamide) was shown to bind to a Gram negative bacterium, Pseudomonas aeruginosa . The nonbound polymer had a lower critical solution temperature (LCST) above 60 °C. However, binding caused aggregation, which was disrupted on cooling of the bacteria and polymer mixture. The data indicate that polymer binding of bacteria occurred by interaction of the end groups with lipopolysaccharide and that the binding decreased the LCST to below 37 °C. Cooling then progressed the polymer/bacteria aggregate through a bound LCST into an open polymer coil conformation that was not adhesive to P. aeruginosa .  相似文献   

14.
Oxidative stress is a feature of cholestatic syndrome and induces multidrug resistance-associated protein 2 (Mrp2) internalization from the canalicular membrane surface. We have previously shown that the activation of a novel protein kinase C (nPKC) by oxidative stress regulates Mrp2 internalization. The internalized Mrp2 was recycled to the canalicular surface in a protein kinase A (PKA)-dependent manner after intracellular glutathione (GSH) levels were replenished. However, the putative phosphorylation targets of these protein kinases involved in reversible Mrp2 trafficking remain unclear. In this study, we investigated the effect of changing the intrahepatic redox status on the C-terminal phosphorylation status of radixin (p-radixin), which links Mrp2 to F-actin, and the interaction of p-radixin with Mrp2 in rat hepatocytes. We detected a significant decrease in the amount of p-radixin that co-immunoprecipitated with Mrp2 after tertiary-butylhydroperoxide (t-BHP) treatment. After treatment with GSH-ethylester (GSH-EE), the phosphorylation level became the same as that of the control. A PKC and protein phosphatase (PP)-1/2A inhibitor, but not a PP-2A selective inhibitor, prevented the t-BHP-induced decrease of p-radixin and subsequent canalicular Mrp2 localization. In contrast, a PKA inhibitor affected the recovery process facilitated by GSH-EE treatment. In conclusion, the interaction of p-radixin with Mrp2 was decreased by the activation of PKC and PP-1 under oxidative stress conditions which subsequently led to Mrp2 internalization, whereas the interaction of p-radixin and Mrp2 was increased by the activation of PKA during recovery from oxidative stress.  相似文献   

15.
Several recent studies have shown that Ca2+/calmodulin-dependent protein kinase I (CaMKI) is phosphorylated and activated by a protein kinase (CaMKK) that is itself subject to regulation by Ca2+/calmodulin. In the present study, we demonstrate that this enzyme cascade is regulated by cAMP-mediated activation of cAMP-dependent protein kinase (PKA). In vitro, CaMKK is phosphorylated by PKA and this is associated with inhibition of enzyme activity. The major site of phosphorylation is threonine 108, although additional sites are phosphorylated with lower efficiency. In vitro, CaMKK is also phosphorylated by CaMKI at the same sites as PKA, suggesting that this regulatory phosphorylation might play a role as a negative-feedback mechanism. In intact PC12 cells, activation of PKA with forskolin resulted in a rapid inhibition of both CaMKK and CaMKI activity. In hippocampal slices CaMKK was phosphorylated under basal conditions, and activation of PKA led to an increase in phosphorylation. Two-dimensional phosphopeptide mapping indicated that activation of PKA led to increased phosphorylation of multiple sites including threonine 108. These results indicate that in vitro and in intact cells the CaMKK/CaMKI cascade is subject to inhibition by PKA-mediated phosphorylation of CaMKK. The phosphorylation and inhibition of CaMKK by PKA is likely to be involved in modulating the balance between cAMP- and Ca2+-dependent signal transduction pathways.  相似文献   

16.
Endothelin-1 (ET1) and ATP stimulate contraction and hypertrophy of vascular smooth muscle cells (VSMC) by activating diverse signalling pathways. In this study, we show that in VSMC, ET1 and ATP stimulate transient and sustained activation of protein kinase A (PKA), respectively. Using a dominant negative PKA mutant (PKA-DN), we examined the functional significance of PKA activation in the signalling of ET1 and ATP. Overexpression of PKA-DN did not alter the ET1- or ATP-induced phosphorylation of the extracellular signal-regulated protein kinase, Erk2. ATP stimulated a profound, PKA-dependent activation of cAMP-response element (CRE), whereas the effect of ET1 was negligible. Both ET1 and ATP stimulated serum response factor (SRF)-dependent gene expression. Overexpression of PKA-DN potentiated the effects of ET1 and ATP on SRF activity, whereas stimulation of PKA by isoproterenol, forskolin or by overexpression of the PKA catalytic subunit decreased SRF activity. These data demonstrate that (i) PKA negatively regulates SRF activity and (ii) ET1 and ATP stimulate opposing pathways, whose balance determines the net activity of SRF.  相似文献   

17.
18.
Abstract: It is generally believed that protein phosphorylation is an important mechanism through which the functions of voltage- and ligand-gated channels are modulated. The intracellular carboxyl terminus of P2×2 receptor contains several consensus phosphorylation sites for cyclic AMP (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC), suggesting that the function of the P2×2 purinoceptor could be regulated by the protein phosphorylation. Whole-cell voltage-clamp recording was used to record ATP-evoked cationic currents from human embryonic kidney (HEK) 293 cells stably transfected with the cDNA encoding the rat P2×2 receptor. Dialyzing HEK 293 cells with phorbol 12-myristate 13-acetate, a PKC activator, failed to affect the amplitude and kinetics of the ATP-induced cationic current. The role of PKA phosphorylation in modulating the function of the P2×2 receptor was investigated by internally perfusing HEK 293 cells with 8-bromo-cAMP or the purified catalytic subunit of PKA. Both 8-bromo-cAMP and PKA catalytic subunit caused a reduction in the magnitude of the ATP-activated current without affecting the inactivation kinetics and the value of reversal potential. Site-directed mutagenesis was also performed to replace the intracellular PKA consensus phosphorylation site (Ser431) with a cysteine residue. In HEK 293 cells expressing (S431C) mutant P2×2 receptors, intracellular perfusion of 8-bromo-cAMP or purified PKA catalytic subunit did not affect the amplitude of the ATP-evoked current. These results suggest that as with other ligand-gated ion channels, protein phosphorylation by PKA could play an important role in regulating the function of the P2×2 receptor and ATP-mediated physiological effects in the nervous system.  相似文献   

19.
20.
We developed a new biomaterial for use in cell culture. The biomaterial enabled protein-free cell culture and the recovery of viable cells by lowering the temperature without the aid of supplements. Insulin was immobilized and a thermoresponsive polymer was grafted onto a substrate. We investigated the effect of insulin coupling on the lower critical solution temperature (LCST) of the thermoresponsive polymer, poly(N-isopropylacrylamide-co-acrylic acid), using polymers that were ungrafted, or coupled with insulin. The insulin conjugates were precipitated from an aqueous solution at high temperatures, but they were soluble at low temperatures. The LCST was not significantly affected by the insulin coupling. The thermoresponsive polymer was grafted to glow-discharged polystyrene film and covalently conjugated with insulin. The surface wettability of the conjugate film was high at low temperatures and low at high temperatures. The amounts of immobilized insulin required to stimulate cell growth were 1-10% of the amount of free insulin required to produce the same effect. The maximal mitogenic effect of immobilized insulin was greater than that of free insulin. About half of the viable cells was detached from the film only by lowering the temperature. The recovered cells proliferated normally on new culture dishes. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 339-344, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号