首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

Specification of primordial germ cells (PGCs) results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG) cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF.

Methodology and Principal Findings

Here we show that Trichostatin A (TSA), an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency.

Conclusions/Significance

We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state.  相似文献   

3.
4.
本研究探讨体外诱导鸡胚胎生殖细胞(EGCs)分化为神经干细胞(NSCs)的可能性.EGCs经类胚体(EB)阶段,以维生素A酸(RA)等进行诱导,在NSCs选择性培养基中筛培养扩增7 d,观察形态变化;采用RT-PCR法检测nestin基因表达及免疫细胞化学法检测nestin等NSCs特异性标志物,并对其扩增及分化能力进行观察.结果显示:EGCs经初级诱导,NSCs选择性培养基筛选培养7 d后,形成大量神经球样结构,可扩增传代;绝大部分神经球样结构呈nestin抗原阳性,表达nestin基因,且可分化为神经上皮样及少突胶质细胞.研究结果表明:RA等诱导的EGCs,经选择性培养基筛选培养可获得NSCs,有望为眼部神经变性疾病的治疗提供新的技术参考.  相似文献   

5.
6.
胚胎干细胞诱导分化为雄性生殖细胞的研究进展   总被引:2,自引:0,他引:2  
胚胎干细胞(embryonic stem cells,ES细胞)具有自我更新及无限分化潜能,理论上可以分化为生殖细胞。目前,在人及鼠中已有体外诱导ES细胞分化为成熟精子的报道。系统阐述影响ES细胞分化为雄性生殖细胞的内源性及外源性因素,并结合国内外最新研究进展总结其诱导分化方法,展望应用前景,期望为从事相关研究的学者提供参考。  相似文献   

7.
8.
Embryonic stem cells differentiated on M15 cells have previously been shown to give rise to cells of the mesendodermal and definitive endodermal lineages. Here we demonstrate that neuroectodermal and mesodermal lineages can be derived from ES cells cultured on M15 cells and subsequently subjected to specific culture conditions, as confirmed by the expression of molecular markers. Prospective isolation and microarray analyses showed that neuroectodermal cells expressed anterior-to-posterior, as well as dorso-ventral regional markers, suggesting that this procedure could be used for the induction of cells belonging to a wide variety of neural lineages. Lateral mesoderm and paraxial mesoderm cells were also produced and their gene expression profiles were confirmed by microarray analyses. These results indicate that the M15 cell system provides a valuable tool for generating ES cell-derived lineage-specific cell types belonging to the three germ layers, namely neuroectoderm, mesoderm, and definitive endoderm.  相似文献   

9.
Using embryonic stem cells to introduce mutations into the mouse germ line   总被引:5,自引:0,他引:5  
It is now possible, through the use of a number of experimental technologies, to transfer genetic information into mouse embryos to stably alter the genetic constitution of mice. This experimental approach, namely the generation of so-termed "transgenic" animals, is affording new insights into a wide variety of biological problems. This review focuses on one system for the generation of transgenic mice, which utilizes tissue culture cell lines of embryonic stem cells, termed ES cells. The remarkable property of ES cells is that they retain the potential to reform an embryo; when they are replaced inside a carrier embryo, they resume normal development and contribute to all the tissues of the live-born chimeric animal. Recent experiments, using a repertoire of gene transfer techniques, have shown that ES cells are amenable to a variety of experimental manipulations in tissue culture. Moreover, it has been demonstrated that these genetically altered cells can be transferred into the germ line of chimeric mice, thus allowing the production of unique strains of animals for study. The applications of the ES cell system are reviewed, with particular emphasis on their use for the generation of random insertional mutations using a retrovirally mediated mutagenesis approach. Finally, the use of ES cells in conjunction with the recently described technique of homologous recombination, or "gene targeting," is discussed. This technology allows the generation of animals carrying extremely precise genetic modifications of endogenous genes.  相似文献   

10.
Primordial germ cells (PGCs) are undifferentiated germ cells in embryos. We previously found that some mouse PGCs develop into pluripotential cells (EG cells) when cultured on a feeder layer expressing the membrane bound form of Steel factor with culture medium containing leukemia inhibitory factor and basic fibroblast growth factor. To understand the mechanisms of the conversion of PGCs into EG cells, we attempted to identify PGC subpopulations that have the ability to develop into EG cells. Using flow cytometry, we fractionated PGCs by the expression of the cell surface antigen integrin α6, as well as by the detection of side‐population (SP) cells in which stem cells are enriched in various tissues. PGCs with negative or low integrin α6 expression and with SP cell phenotype showed higher potential to convert to EG cells. Negative or low integrin α6 expression in PGCs was also correlated with lower expression of Ddx4, which is specifically expressed in PGCs after embryonic day 10.5. The results indicate that the primitive PGC population showing the SP cell phenotype among undifferentiated PGCs has a higher ability of being converted into EG cells. Thus, conversion of PGCs into pluripotential stem cells may be regulated by being influenced by the natural status of individual PGCs as well as the reprogramming process after starting culture.  相似文献   

11.
Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells.  相似文献   

12.
13.
14.
15.
Pluripotential stem cells derived from migrating primordial germ cells   总被引:9,自引:0,他引:9  
Pluripotent stem cells termed embryonic germ cells (EGCs) have earlier been derived from pre- and post-migrating mouse primordial germ cells (PGCs). We have recently obtained four EGC lines from migrating PGCs of 9.5 days post coitum (dpc) embryos. All lines were male with normal karyotype and showed properties that are similar to previously established EGC lines, including colony morphology, expression of alkaline phosphatase (AP), and expression of SSEA-1 antigen. The developmental potency of two of these lines was tested in vivo. They contributed to a range of tissues in fetal chimeras including heart, lung, kidney, intestine, muscle, brain and skin. We also examined the methylation status of the imprinted genes: Igf2r, p57Kip2, Lit1, H19 and Igf2. Igf2r, p57Kip2 and Lit1 were unmethylated in all analysed EGC lines, whereas H19 and Igf2 showed significant hypo-methylation in the 9.5 dpc EGC-1 line when compared to previously derived 11.5 dpc male EGC lines. This suggests that imprint erasure in the male germ line occurs prior to 9.5 dpc for all imprinted genes examined.  相似文献   

16.
17.
In vitro differentiation of spermatogonial stem cells (SSCs) promotes the understanding of the mechanism of spermatogenesis. The purpose of this study was to isolate spermatogonial stem cell-like cells from murine testicular tissue, which then were induced into haploid germ cells by retinoic acid (RA). The spermatogonial stem cell-like cells were purified and enriched by a two-step plating method based on different adherence velocities of SSCs and somatic cells. Cell colonies were present after culture in M1-medium for 3 days. Through alkaline phosphatase, RT-PCR and indirect immunofluorescence cell analysis, cell colonies were shown to be SSCs. Subsequently, cell colonies of SSCs were cultured in M2-medium containing RA for 2 days. Then the cell colonies of SSCs were again cultured in M1-medium for 6–8 days, RT-PCR and indirect immunofluorescence cell analysis were chosen to detect haploid male germ cells. It could be demonstrated that 10−7 mol l−1 of RA effectively induced the SSCs into haploid male germ cells in vitro.  相似文献   

18.
19.
Mouse primordial germ cells (PGCs) migrate from the base of the allantois to the genital ridge. They proliferate both during migration and after their arrival, until initiation of the sex-differentiation of fetal gonads. Then, PGCs enter into the prophase of the first meiotic division in the ovary to become oocytes, while those in the testis become mitotically arrested to become prospermatogonia. Growth regulation of mouse PGCs has been studied by culturing them on feeder cells. They show a limited period of proliferation in vitro and go into growth arrest, which is in good correlation with their developmental changes in vivo. However, in the presence of multiple growth signals, PGCs can restart rapid proliferation and transform into pluripotent embryonic germ (EG) cells. Observation of ectopic germ cells and studies of reaggregate cultures suggested that both male and female PGCs show cell-autonomous entry into meiosis and differentiation into oocytes if they were set apart from the male gonadal environments. Recently, we developed a two-dimensional dispersed culture system in which we can examine transition from the mitotic PGCs into the leptotene stage of the first meiotic division. Such entry into meiosis seems to be programmed in PGCs before reaching the genital ridges and unless it is inhibited by putative signals from the testicular somatic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号