首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neurofilament functions in health and disease.   总被引:25,自引:0,他引:25  
Transgenic approaches have recently been used to investigate the functions of neuronal intermediate filaments. Gene knockout studies have demonstrated that neurofilaments are not required for axogenesis and that individual neurofilament proteins play distinct roles in filament assembly and in the radial growth of axons. The involvement of neurofilaments in disease is supported by the discovery of novel mutations in the neurofilament heavy gene from cases of amyotrophic lateral sclerosis and by reports of neuronal death in mouse models expressing neurofilament and alpha-internexin transgenes. However, mouse studies have shown that axonal neurofilaments are not required for pathogenesis caused by mutations in superoxide dismutase and that increasing perikaryal levels of neurofilament proteins may even confer protection in this disease.  相似文献   

2.
3.
Proteoglycans in health and disease: structures and functions.   总被引:21,自引:6,他引:15       下载免费PDF全文
  相似文献   

4.
The Rho small GTPase: functions in health and disease   总被引:2,自引:0,他引:2  
  相似文献   

5.
DOCK proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in GEFs, they mediate the GTP–GDP exchange reaction through DHR-2 domain. Accumulating evidence indicates that the DOCK proteins act as major GEFs in varied biological settings. For example, DOCK2, which is predominantly expressed in hematopoietic cells, regulates migration and activation of leukocytes through Rac activation. On the other hand, it was recently reported that mutations of DOCK8, another member of the DOCK family proteins, cause a combined immunodeficiency syndrome in humans. This article reviews the structure, functions and signaling of DOCK2 and DOCK8, especially focusing on their roles in immune responses.  相似文献   

6.
7.
8.
The close apposition between endoplasmic reticulum (ER) and mitochondria represents a key platform, capable to regulate different fundamental cellular pathways. Among these, Ca2+ signaling and lipid homeostasis have been demonstrated over the last years to be deeply modulated by ER-mitochondria cross-talk. Given its importance in cell life/death decisions, increasing evidence suggests that alterations of the ER-mitochondria axis could be responsible for the onset and progression of several diseases, including neurodegeneration, cancer and obesity. However, the molecular identity of the proteins controlling this inter-organelle apposition is still debated. In this review, we summarize the main cellular pathways controlled by ER-mitochondria appositions, focusing on the principal molecules reported to be involved in this interplay and on those diseases for which alterations in organelles communication have been reported.  相似文献   

9.
10.
11.
The beneficial effects of calorie restriction diet in extending lifespan and preventing diseases have long been recognized. Recent genetic and molecular studies in model organisms began to uncover the molecular regulation of calorie restriction response, with the gene SIR2 playing an essential role. This article summarizes the latest development on how mammalian SIR2 homologs coordinately regulate the calorie restriction response.  相似文献   

12.
Sirtuins are ancient proteins widely distributed in all lifeforms of earth. These proteins are universally able to bind NAD+, and activate it to effect ADP-ribosylation of cellular nucleophiles. The most commonly observed sirtuin reaction is the ADP-ribosylation of acetyllysine, which leads to NAD+-dependent deacetylation. Other types of ADP-ribosylation have also been observed, including protein ADP-ribosylation, NAD+ solvolysis and ADP-ribosyltransfer to 5,6-dimethylbenzimidazole, a reaction involved in eubacterial cobalamin biosynthesis. This review broadly surveys the chemistries and chemical mechanisms of these enzymes.  相似文献   

13.
The NAD-dependent histone deacetylase sirtuin (Sirt)1 is implicated in a wide variety of physiological processes, ranging from tumorigenesis to mitochondrial biogenesis to neuronal development. Recent studies indicate that Sirt1 is a critical regulator of both the innate and adaptive immune response in mice and its altered functions are likely involved in autoimmune diseases. Small molecules that modulate Sirt1 functions are potential therapeutic reagents for autoimmune inflammatory diseases. In this review, we highlight the functions of Sirt1 in the immune system focusing on the underlying molecular mechanisms, and the potential of Sirt1 as a therapeutic target for autoimmune diseases.  相似文献   

14.
15.
Angiopoietin-like protein (ANGPTL) family members, mainly ANGPTL3, ANGPTL4 and ANGPTL8, are physiological inhibitors of lipoprotein lipase (LPL), and play a critical role in lipoprotein and triglyceride metabolism in response to nutritional cues. ANGPTL8 has been described by different names in various studies and has been ascribed various functions at the systemic and cellular levels. Circulating ANGPTL8 originates mainly from the liver and to a smaller extent from adipose tissues. In the blood, ANGPTL8 forms a complex with ANGPTL3 or ANGPTL4 to inhibit LPL in fed or fasted conditions, respectively. Evidence is emerging for additional intracellular and receptor-mediated functions of ANGPTL8, with implications in NFκB mediated inflammation, autophagy, adipogenesis, intra-cellular lipolysis and regulation of circadian clock. Elevated levels of plasma ANGPTL8 are associated with metabolic syndrome, type 2 diabetes, atherosclerosis, hypertension and NAFLD/NASH, even though the precise relationship is not known. Whether ANGPTL8 has direct pathogenic role in these diseases, remains to be explored. In this review, we develop a balanced view on the proposed association of this protein in the regulation of several pathophysiological processes. We also discuss the well-established functions of ANGPTL8 in lipoprotein metabolism in conjunction with the emerging novel extracellular and intracellular roles of ANGPTL8 and the implicated metabolic and signalling pathways. Understanding the diverse functions of ANGPTL8 in various tissues and metabolic states should unveil new opportunities of therapeutic intervention for cardiometabolic disorders.  相似文献   

16.
DNA损伤的发生与积累是造成细胞功能紊乱的根本原因,也是引起衰老与肿瘤等疾病发生的关键事件。为维持机体自身遗传物质的完整性与稳定性,生物体内拥有多种针对不同类型DNA损伤的修复方式。Sirtuin蛋白是一组NAD+依赖的、高度保守的组蛋白去乙酰化酶,可通过去乙酰化作用调节众多底物蛋白质的表达、活性与稳定性。 近来的研究显示,DNA损伤修复途径的多个关键蛋白质是Sirtuin的下游底物。Sirtuin蛋白通过调节同源重组修复、非同源末端修复、核苷酸切除修复等途径中的核心蛋白质参与修复包括双链断裂(double stranded breakes, DSBs)在内的多种DNA损伤类型,从而在维持基因组稳定性、寿命以及细胞能量代谢调节等一系列生物学作用中发挥至关重要的作用。本综述将介绍近年来Sirtuin与DNA损伤修复的研究进展。  相似文献   

17.
Recent studies have shown that premature cellular senescence and normal organ development and function depend on the type V intermediate filament proteins, the lamins, which are major structural proteins of the nucleus. This review presents an up-to-date summary of the literature describing new findings on lamin functions in various cellular processes and emphasizes the relationship between the lamins and devastating diseases ranging from premature aging to cancer. Recent insights into the structure and function of the A- and B- type lamins in normal cells and their dysfunctions in diseased cells are providing novel targets for the development of new diagnostic procedures and disease intervention. We summarize these recent findings, focusing on data from mice and humans, and highlight the expanding knowledge of these proteins in both healthy and diseased cells.  相似文献   

18.
Sir2 proteins, or sirtuins, are a family of enzymes that catalyze NAD+-dependent deacetylation reactions and can also process ribosyltransferase, demalonylase, and desuccinylase activities. More than 40 crystal structures of sirtuins have been determined, alone or in various liganded forms. These high-resolution architectural details lay the foundation for understanding the molecular mechanisms of catalysis, regulation, substrate specificity, and inhibition of sirtuins. In this minireview, we summarize these structural features and discuss their implications for understanding sirtuin function.  相似文献   

19.
Cytokines are cellular regulators of non-immunoglobulin character. The studies of interferon, a representative cytokine, support the view that cytokines are information molecules forming a network in the animal organism. Their main task is to protect the homeostasis of the organism. This may be disturbed both by external and internal causes. The results of the studies of interferon appearing in patients with systems lupus erythematosus do not support the assumption that interferons of this type may play a role in aetiology of autoimmune diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号