首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. M?ssbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.  相似文献   

2.
3.
4.
Heliobacteria and green sulfur bacteria have type I homodimeric reaction centers analogous to photosystem I. One remaining question regarding these homodimeric reaction centers is whether the structures and electron transfer reactions are truly symmetric or not. This question is relevant to the origin of the heterodimeric reaction centers, such as photosystem I and type II reaction centers. In this mini-review, Fourier transform infrared studies on the special pair bacteriochlorophylls, P798 in heliobacteria and P840 in green sulfur bacteria, are summarized. The data are reinterpreted in the light of the X-ray crystallographic structure of photosystem I and the sequence alignments of type I reaction center proteins, and discussed in terms of hydrogen bonding interactions and the symmetry of charge distribution over the dimer.  相似文献   

5.
The reaction center (RC) of green sulfur bacteria has iron—sulfur clusters as terminal acceptors and is related to the Type I RC found in Heliobacter sp. and in Photosystem I (PS I) of green plants and cyanobacteria. Degenerate primers were used to retrieve the genes coding for one of the RC proteins, PscB, from 11 strains of green sulfur bacteria. PCR using the same primers gave no product with a second group of strains and the protein from these strains did not crossreact with antibodies raised against purified PscB from the first group, suggesting the presence of a high degree of variability. The sequences shared a high degree of similarity in the region coding for the binding motif for the 4Fe–4S centers. However, the N-terminal portion of the deduced protein sequences was highly variable and contained a highly positively charged, low-complexity region with repeated tetrapeptides with two alanines flanked by proline or lysine. The PscB sequences obtained fell into two major groups, and the results suggested a lack of correlation between the pigmentation of the chlorosome antenna system and the reaction center protein. There is also a lack of correlation between the grouping of the pscB sequences and the phylogeny deduced from 16S rRNA.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA-D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A(0), which is a Chl a-derivative and FeS-center F(X). An equivalent to the electron acceptor A(1) in Photosystem I, which is tightly bound phylloquinone acting between A(0) and F(X), is not required for forward electron transfer in the RC of green sulfur bacteria. This difference is reflected by different rates of electron transfer between A(0) and F(X) in the two systems. The subunit PscB contains the two FeS-centers F(A) and F(B). STEM particle analysis suggests that the core of the RC with PscA and PscB resembles the PsaAB/PsaC-core of the P700-reaction center in Photosystem I. PscB may form a protrusion into the cytoplasmic space where reduction of ferredoxin occurs, with FMO trimers bound on both sides of this protrusion. Thus the subunit composition of the RC in vivo should be 2(FMO)(3)(PscA)(2)PscB(PscC)(2)PscD. Only 16 BChl a-, four Chl a-molecules and two carotenoids are bound to the RC-core, which is substantially less than its counterpart of Photosystem I, with 85 Chl a-molecules and 22 carotenoids. A total of 58 BChl a/RC are present in the membranes of green sulfur bacteria outside the chlorosomes, corresponding to two trimers of FMO (42 Bchl a) per RC (16 BChl a). The question whether the homodimeric RC is totally symmetric is still open. Furthermore, it is still unclear which cytochrome c is the physiological electron donor to P840(+). Also the way of NAD(+)-reduction is unknown, since a gene equivalent to ferredoxin-NADP(+) reductase is not present in the genome.  相似文献   

7.
Photosynthetic reaction center of green sulfur bacteria studied by EPR   总被引:2,自引:0,他引:2  
Membrane preparations of two species of the green sulfur bacteria Chlorobium have been studied by EPR. Three signals were detected which were attributed to iron-sulfur centers acting as electron acceptors in the photosynthetic reaction center. (1) A signal from a center designated FB, (gz = 2.07, gy = 1.91, gx = 1.86) was photoinduced at 4 K. (2) A similar signal, FA (gz = 2.05, gy = 1.94, gx = 1.88), was photoinduced in addition to the FB signal upon a short period of illumination at 200 K. (3) Further illumination at 200 K resulted in the appearance of a broad feature at g = 1.78. This is attributed to the gx component of an iron-sulfur center designated FX. The designations of these signals as FB, FA, and FX are based on their spectroscopic similarities to signals in photosystem I (PS I). The orientation dependence of these EPR signals in ordered Chlorobium membrane multilayers is remarkably similar to that of their PS I homologues. A magnetic interaction between the reduced forms of FB and FA occurs, which is also very similar to that seen in PS I. However, in contrast to the situation in PS I, FA and FB cannot be chemically reduced by sodium dithionite at pH 11. This indicates redox potentials for FA and FB which are lower by at least 150 mV than their PS I counterparts. The triplet state of P840, the primary electron donor, could be photoinduced at 4 K in samples which had been preincubated with sodium dithionite and methyl viologen and then preilluminated at 200 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Photoaccumulation at 205 K in the presence of dithionite produces EPR signals in anaerobically prepared membranes from Chlorobium limicola and Heliobacterium chlorum that resemble the EPR spectrum of phyllosemiquinone (A1*-) photoaccumulated in photosystem I. We have used ENDOR and special TRIPLE resonance spectroscopy to demonstrate conclusively that these signals arise from menasemiquinone electron acceptors reduced by photoaccumulation. Hyperfine couplings to two protons H-bonded to the semiquinone oxygens have been identified by exchange of H. chlorum into D2O, and hyperfine couplings to the methyl group, and the methylene group of the phytyl side chain, of the semiquinone have also been assigned. The electronic structure of these menasemiquinones in these reaction centers is very similar to that of phyllosemiquinone in PSI, and shows a distorted electron spin density distribution relative to that of phyllosemiquinone in vitro. Special TRIPLE resonance spectrometry has been used to investigate the effect of detergents and oxygen on membranes of C. limicola. Triton X-100 and oxygen affect the menaquinone binding site, but n-dodecyl beta-D-maltoside preparations exhibit a relatively unaltered special TRIPLE spectrum for the photoaccumulated menasemiquinone.  相似文献   

9.
Inorganic sulfur oxidizing system in green sulfur bacteria   总被引:2,自引:0,他引:2  
Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur bacteria are membrane-bound sulfide-quinone oxidoreductase, periplasmic (sometimes membrane-bound) flavocytochrome c sulfide dehydrogenase, and monomeric flavocytochrome c (SoxF). Some green sulfur bacteria oxidize thiosulfate by the multienzyme system called either the TOMES (thiosulfate oxidizing multi-enzyme system) or Sox (sulfur oxidizing system) composed of the three periplasmic proteins: SoxB, SoxYZ, and SoxAXK with a soluble small molecule cytochrome c as the electron acceptor. The oxidation of sulfide and thiosulfate by these enzymes in vitro is assumed to yield two electrons and result in the transfer of a sulfur atom to persulfides, which are subsequently transformed to elemental sulfur. The elemental sulfur is temporarily stored in the form of globules attached to the extracellular surface of the outer membranes. The oxidation pathway of elemental sulfur to sulfate is currently unclear, although the participation of several proteins including those of the dissimilatory sulfite reductase system etc. is suggested from comparative genomic analyses.  相似文献   

10.
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP reducing power - BChl bacteriochlorophyll - Ncell cell material - specific growth rate - {ie52-1} maximal specific growth rate - D dilution rate - K s saturation constant - s concentration of limiting substrate - S R same ass but in reservoir bottle - Y yield factor - iSo intracellular elemental sulfur - eSo extracellular elemental sulfur - PHB poly-beta-hydroxybutyric acid  相似文献   

11.
Reversible photoreduction of pheophytin (Pheo) accompanied by a decrease in the chlorophyll fluorescence yield is observed in Photosystem 2 of the intact cells of green algae and cyanobacteria under anaerobic conditions. The photoreaction is inhibited by DCMU and reactivated upon subsequent addition of either ascorbate of dithionite. It is suggested that as a result of electron donation from the water splitting system being in the state S(3), to the reaction centre of Photosystem 2 in the state [P(+)(680)Pheo(-)] Q(-) after the primary photoreaction there occurs formation of the long-living state [P(680)Pheo(-)] Q(-). It was found that oxidized NADP, benzyl viologen and methyl viologen accelerate oxidation of Pheo reduced int he Photosystem 2 in the light indicating that these electron acceptors (typical for Photosystem 1) can accept an election from Pheo in Photosystem 2.  相似文献   

12.
Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO2 fixation. Whole-genome gene family and single gene sequence comparisons yielded similar phylogenetic trees of the sequenced chromosomes indicating a concerted vertical evolution of large gene sets. Chromosomal synteny of genes is not preserved in the phylum Chlorobi. The accessory genome is characterized by anomalous oligonucleotide usage and endows the strains with individual features for transport, secretion, cell wall, extracellular constituents, and a few elements of the biosynthetic apparatus. Giant genes are a peculiar feature of the genera Chlorobium and Prosthecochloris. The predicted proteins have a huge molecular weight of 106, and are probably instrumental for the bacteria to generate their own intimate (micro)environment.  相似文献   

13.
The green sulfur bacterium Chlorobium vibrioforme was cultured in the presence of ethylene to selectively inhibit the synthesis of the chlorosome antenna BChl d. Use of these cells as starting material simplified the isolation of a photoactive antenna-depleted membrane fraction without the use of high concentrations of detergents. The preparation had a BChl alpha/P840 of 50, and the spectral properties were similar to those of preparations isolated from cells grown with a normal complement of chlorosomes. The membrane preparation was active in NADP+ photoreduction. This indicated that the fraction contained reaction centers with complete electron-transfer sequences which were then characterized further by flash kinetic spectrophotometry and EPR. We confirmed that cytochrome c553 is the endogenous donor to P840+, and at room temperature we observed a recombination reaction between the reduced terminal acceptor and P840+ with a t1/2 = 7 ms. Oxidative degradation of iron-sulfur centers using low concentrations of chaotropic salts introduced a faster recombination reaction of t1/2 = 50 microseconds which was lost at higher concentrations of chaotrope, indicating the participation of another iron-sulfur redox center earlier than the terminal acceptor. Cluster insertion using ferric chloride and sodium sulfide in the presence of 2-mercaptoethanol restored both the 50-microseconds and 7-ms recombination reactions, allowing definitive assignments of these centers as iron-sulfur centers. Following the suggestion of Nitschke et al. [(1990) Biochemistry 29, 3834-3842], we associate these two kinetic phases to back-reactions between P840+ and iron-sulfur centers FX and FAFB, respectively. The iron-sulfur cluster degradation and reconstitution protocols also led to inhibition and restoration of NADP+ photoreduction by the membrane preparation, providing unequivocal evidence for the function of the centers FX and FAFB in the physiological electron-transfer sequence on the acceptor side of the Chlorobium reaction center. At 77 K we observed a recombination reaction of t1/2 = 20 ms that we suggest occurs between Fx- and P840+. Degradation of the iron-sulfur clusters resulted in replacement of the 20-ms phase with a faster reaction of t1/2 = 80 microseconds that was most likely a recombination between the early acceptor A1- and P840+ or decay of 3P840. Analysis of the iron-sulfur centers in the preparation by EPR at cryogenic temperature supports the optical measurements. EPR signals originating from the terminal acceptor(s) were not observed following treatment of the membrane preparation by chaotropes, and a modified signal was restored following cluster reinsertion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center.  相似文献   

16.
Green sulfur bacteria possess a complex photosynthetic machinery. The dominant light harvesting systems are chlorosomes, which consist of bacteriochlorophyll c, d or e oligomers with small amounts of protein. The chlorosomes are energetically coupled to the membrane-embedded iron sulfur-type reaction center via a bacteriochlorophyll a-containing baseplate protein and the Fenna-Matthews-Olson (FMO) antenna protein. The fluorescence yield and spectral properties of these photosynthetic complexes were investigated in intact cells of several species of green sulfur bacteria under physiological, anaerobic conditions. Surprisingly, green sulfur bacteria show a complex modulation of fluorescence yield upon illumination that is very similar to that observed in oxygenic phototrophs. Within a few seconds of illumination, the fluorescence reaches a maximum, which decreases within a minute of illumination to a lower steady state. Fluorescence spectroscopy reveals that the fluorescence yield during both processes is primarily modulated on the FMO-protein level, while the emission from chlorosomes remains mostly unchanged. The two most likely candidates that modulate bacteriochlorophyll fluorescence are (1) direct excitation quenching at the FMO-protein level and (2) indirect modulation of FMO-protein fluorescence by the reduction state of electron carriers that are part of the reaction center.  相似文献   

17.
The Fenna–Matthews–Olson protein is a water-soluble protein found only in green sulfur bacteria. Each subunit contains seven bacteriochlorophyll (BChl) a molecules wrapped in a string bag of protein consisting of mostly β sheet. Most other chlorophyll-binding proteins are water-insoluble proteins containing membrane-spanning α helices. We compared an FMO consensus sequence to well-characterized, membrane-bound chlorophyll-binding proteins: L & M (reaction center proteins of proteobacteria), D1 & D2 (reaction center proteins of PS II), CP43 & CP47 (core proteins of PS II), PsaA & PsaB (reaction center proteins of PS I), PscA (reaction center protein of green sulfur bacteria), and PshA (reaction center protein of heliobacteria). We aligned the FMO sequence with the other sequences using the PAM250 matrix modified for His binding-site identities and found a signature sequence (LxHHxxxGxFxxF) common to FMO and PscA. (The two His residues are BChl a. binding sites in FMO.) This signature sequence is part of a 220-residue C-terminal segment with an identity score of 13%. PRSS (Probability of Random Shuffle) analysis showed that the 220-residue alignment is better than 96% of randomized alignments. This evidence supports the hypothesis that FMO protein is related to PscA. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The 16S rDNA sequences of nine strains of green sulfur bacteria (Chlorobiaceae) were determined and compared to the four known sequences of Chlorobiaceae and to sequences representative for all eubacterial phyla. The sequences of the Chlorobiaceae strains were consistent with the secondary structure model proposed earlier for Chlorobium vibrioforme strain 6030. Similarity values > 90.1% and Knuc values < 0.11 indicate a close phylogenetic relatedness among the green sulfur bacteria. As a group, these bacteria represent an isolated branch within the eubacterial radiation. In Chlorobiaceae, a similar morphology does not always reflect a close phylogenetic relatedness. While ternary fission is a morphological trait of phylogenetic significance, gas vesicle formation occurs also in distantly related species. Pigment composition is not an indicator of phylogenetic relatedness since very closely related species contain different bacteriochlorophylls and carotenoids. Two different molecular fingerprinting techniques for the rapid differentiation of Chlorobiaceae species were investigated. The 16S rDNA fragments of several species could not be separated by denaturing gradient gel electrophoresis. In contrast, all strains investigated during the present work gave distinct banding patterns when dispersed repetitive DNA sequences were used as targets in PCR. The latter technique is, therefore, well suited for the rapid screening of isolated pure cultures of green sulfur bacteria. Received: 26 August 1996 / Accepted: 8 January 1997  相似文献   

19.
1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight yields were obtained as calculated for the complete utilization of the ethanol by the mixed cultures. 3. Dry weight yield determinations for two pure cultures ofChlorobium limicola with different growth limiting amounts of sulfide in the absence and presence of excess acetate confirmed that acetate is incorporated byChlorobium in a fixed proportion to sulfide; compared to the yield in the absence of acetate the yield is increased two to threefold in the presence of acetate. 4. The lowest possible sulfide concentrations necessary for optimal growth of mixed cultures of eitherProsthecochloris orChlorobium withDesulfuromonas on acetate were 7–8 mg H2S per liter of medium. 5. Doubling times at the growth rate limiting light intensities of 5, 10, 20, 50, 100 and 200 lux were determined under optimal growth conditions for the following phototrophic bacteria:Prosthecochloris aestuarii, Chlorobium phaeovibriodes, Chromatium vinosum andRhodopseudomonas capsulata. Reasonably good growth was still obtained withProsthecochloris at 10 and 5 lux light intensity at which no growth of the purple bacteria could be observed.  相似文献   

20.
Electron transfer in reaction center core (RCC) complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum was studied by measuring flash-induced absorbance changes. The first preparation contained approximately three iron-sulfur centers, indicating that the three putative electron acceptors F(X), F(A), and F(B) were present; the Chl. tepidum complex contained on the average only one. In the RCC complex of Ptc. aestuarii at 277 K essentially all of the oxidized primary donor (P840(+)) created by a flash was rereduced in several seconds by N-methylphenazonium methosulfate. In RCC complexes of Chl. tepidum two decay components, one of 0.7 ms and a smaller one of about 2 s, with identical absorbance difference spectra were observed. The fast component might be due to a back reaction of P840(+) with a reduced electron acceptor, in agreement with the notion that the terminal electron acceptors, F(A) and F(B), were lost in most of the Chl. tepidum complexes. In both complexes the terminal electron acceptor (F(A) or F(B)) could be reduced by dithionite, yielding a back reaction of 170 ms with P840(+). At 10 K in the RCC complexes of both species P840(+) was rereduced in 40 ms, presumably by a back reaction with F(X)(-). In addition, a 350 micros component occurred that can be ascribed to decay of the triplet of P840, formed in part of the complexes. For P840(+) rereduction a pronounced temperature dependence was observed, indicating that electron transfer is blocked after F(X) at temperatures below 200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号