首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sequence specificity of micrococcal nuclease complicates its use in experiments addressed to the still controversial issue of nucleosome phasing. In the case of alpha-satellite DNA containing chromatin from African green monkey (AGM) cells cleavage by micrococcal nuclease in the nucleus was reported to occur predominantly at only one location around position 126 of the satellite repeat unit (Musich et al. (1982) Proc. Natl. Acad. Sci. USA 79, 118-122). DNA control experiments conducted in the same study indicated the presence of many preferential cleavage sites for micrococcal nuclease on the 172 bp long alpha-satellite repeat unit. This difference was taken as evidence for a direct and simple phase relationship between the alpha-satellite DNA sequence and the position of the nucleosomes on the DNA. We have quantitatively analyzed the digestion products of the protein-free satellite monomer with micrococcal nuclease and found that 50% of all cuts occur at positions 123 and 132, 5% at position 79, and to a level of 1-3% at about 20 other positions. We also digested high molecular weight alpha-satellite DNA from AGM nuclei with micrococcal nuclease. Again cleavage occurred mostly at positions 123 and 132 of the satellite repeat unit. Thus digestion of free DNA yields results very similar to those reported by Musich et al. for the digestion of chromatin. Therefore no conclusions on a possible phase relationship can be drawn from the chromatin digestion experiments.  相似文献   

2.
D Lohr 《Nucleic acids research》1983,11(19):6755-6773
When the yeast galactokinase gene is not active (repressed, not expressed, quiescent), there is an exceptionally regular nucleosome array on coding sequence galactokinase chromatin, as shown by both denaturing and non-denaturing gel analysis of staphylococcal nuclease digests. Expression of the gene results in a limited smearing of the nucleosome repeat peaks and an increase in interpeak DNA, appearing as a regular ladder of DNA bands on denaturing gels. On non-denaturing gels the pattern is more complex and molecular weight dependent. These data suggest an increase in intracore particle DNA accessibility, allowing staphylococcal nuclease to digest throughout the nucleosome in expressed chromatin. Comparison to bulk chromatin and to an operationally inactive gene (35S rDNA) show that the alteration is specific to expressed chromatin. In contrast, DNase I shows no differences in the digestion of the gene specific chromatin in expressed or inactive states.  相似文献   

3.
4.
X Y Zhang  F Fittler    W Hrz 《Nucleic acids research》1983,11(13):4287-4306
The question of nucleosome phasing on African Green Monkey (AGM) alpha-satellite DNA has been addressed by employing a new approach. Nucleosome cores were prepared from AGM nuclei with micrococcal nuclease, exonuclease III and nuclease S1. The core DNA population derived from alpha-satellite DNA containing chromatin was purified from total core DNA by denaturation of the DNA, reassociation to a low Cot value, and hydroxyapatite chromatography to separate the renatured satellite fraction. After end-labeling the termini of the alpha-satellite containing core DNA fragments were mapped by high resolution gel electrophoresis relative to known restriction sites along the 172 bp repeat unit of the satellite DNA. The results show that nucleosomes occupy eight strictly defined positions on the alpha-satellite DNA which could be determined with an accuracy of +/- 1 base pair. Approximately 35% of all nucleosomes are organized in one of these frames while the other seven registers contribute about 10% each.  相似文献   

5.
Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.  相似文献   

6.
Location of nucleosomes in simian virus 40 chromatin   总被引:5,自引:0,他引:5  
  相似文献   

7.
We have examined the role played by various histones in the organization of the DNA of the nucleosome, using staphylococcal nuclease as a probe of DNA conformation. When this enzyme attacks chromatin, a series of fragments evenly spaced at 10 base pair intervals is generated, reflecting the histone-DNA interactions within the nucleosome structure. To determine what contribution the various histones make to DNA organization, we have studied the staphylococcal nuclease digestion patterns of complexes of DNA with purified histones.Virtually all possible combinations of homogeneous histones were reconstituted onto DNA. Exhaustive digestion of a complex containing the four histones H2A, H2B, H3, and H4 yields a DNA fragment pattern very similar to that of whole chromatin. The only other combinations of histones capable of inducing chromatin-like DNA organization are H2A/H2B/H4 and those mixtures containing both H3 and H4. From an examination of the kinetics of digestion of H3/H4 reconstitutes, we conclude that although the other histones have a role in DNA organization within the nucleosome, the arginine-rich histone pair, H3/H4, can organize DNA segments the length of the nucleosome core in the absence of all other histones.  相似文献   

8.
CENP-A is a component of centromeric chromatin and defines active centromere regions by forming centromere-specific nucleosomes. We have isolated centromeric chromatin containing the CENP-A nucleosome, CENP-B, and CENP-C from HeLa cells using anti-CENP-A and/or anti-CENP-C antibodies and shown that the CENP-A/B/C complex is predominantly formed on alpha-satellite DNA that contains the CENP-B box (alphaI-type array). Mapping of hypersensitive sites for micrococcal nuclease (MNase) digestion indicated that CENP-A nucleosomes were phased on the alphaI-type array as a result of interactions between CENP-B and CENP-B boxes, implying a repetitive configuration for the CENP-B/CENP-A nucleosome complex. Molecular mass analysis by glycerol gradient sedimentation showed that MNase digestion released a CENP-A/B/C chromatin complex of three to four nucleosomes into the soluble fraction, suggesting that CENP-C is a component of the repetitive CENP-B/CENP-A nucleosome complex. Quantitative analysis by immunodepletion of CENP-A nucleosomes showed that most of the CENP-C and approximately half the CENP-B took part in formation of the CENP-A/B/C chromatin complex. A kinetic study of the solubilization of CENPs showed that MNase digestion first released the CENP-A/B/C chromatin complex into the soluble fraction, and later removed CENP-B and CENP-C from the complex. This result suggests that CENP-A nucleosomes form a complex with CENP-B and CENP-C through interaction with DNA. On the basis of these results, we propose that the CENP-A/B/C chromatin complex is selectively formed on the I-type alpha-satellite array and constitutes the prekinetochore in HeLa cells.  相似文献   

9.
F Strauss  A Varshavsky 《Cell》1984,37(3):889-901
Using a generally applicable assay for specific DNA-binding proteins in crude extracts, we have detected and purified an HMG-like nuclear protein from African green monkey cells that preferentially binds to the 172 bp repeat of alpha-satellite DNA (alpha-DNA). DNAase I footprinting with the purified protein detects three specific binding sites (I-III) per alpha-DNA repeat. Site II is 145 bp (one core nucleosome length) from site III on the adjacent alpha-DNA repeat, while site I lies midway between sites II and III. In the alpha-nucleosome phasing frame corresponding with this arrangement, sites I-III would be brought into mutual proximity by DNA folding in the nucleosome. This phasing frame is identical with the preferred frame detected previously in isolated chromatin. Our results suggest that this new and abundant protein recognizes a family of short, related nucleotide sequences found not only in alpha-DNA but also throughout the genome, and that functions of this protein are mediated through its nucleosome-positioning activity. Such nucleosome-positioning proteins may underlie the sequence specificity of both nucleosome arrangements and higher order chromatin structures.  相似文献   

10.
11.
We have determined the relative location of pancreatic DNAase (DNAase I), spleen acid DNAase (DNAase II) and staphylococcal nuclease cleavage sites in the nucleosome core. Each of these three enzymes cleaves the DNA of chromatin at 10. n nucleotide intervals (n integer); this specificity presumably reflects the internal structure of the nucleosome. We have already reported that DNAase I cleaves nucleosomal DNA so that nearest adjacent cuts on opposite strands are staggered by 2 nucleotides, 3′ end extending (Sollner-Webb and Felsenfeld, 1977). Here we show that the nearest cuts made by DNAase II in nucleosomal DNA are staggered by 4 nucleotides, 3′ end extending, while cuts made by staphylococcal nuclease have a stagger of 2 nucleotides, 5′ end extending. The cutting sites of the three enzymes thus do not coincide. Each pair of staggered cuts, however, is symmetrically located about a common axis-that is, the “dyad axes” that bisect nearest pairs of cutting sites coincide for all three enzymes. This result is consistent with the presence of a true dyad axis in the nucleosome core.Our results support the conclusion that a structural feature of the nucleosome, having a 10 nucleotide periodicity, is the common recognition site for all three nucleases. The position of the cut is determined, however, by the individual characteristics of each enzyme. Sites potentially available to nuclease cleavage span a region of 4 nucleotides out of this 10 nucleotide repeat, and a large fraction of these sites are actually cut. Thus much of the nucleosomal DNA must in some sense be accessible to the environment.  相似文献   

12.
We have examined the relationship between the distribution of DNA damage and repair in chromatin from confluent human fibroblasts treated with the carcinogen 7-bromomethylbenz (a) anthracene. Analysis of staphylococcal nuclease (SN)4 digestion kinetics and gel electrophoresis revealed that more total damage occurs in nucleosome core DNA (approximately 80-85% of chromatin DNA) than in SN sensitive DNA (APPROXIMATELY15-20%). Furthermore, over a 24 hr period, damage is removed at about the same rate from these two regions. In contrast, virtually all of the nucleotides incorporated during repair synthesis are initially SN sensitive even when measured at 12 hr after damage. With time many repair-incorporated nucleotides become SN resistant and coelectrophorese with nucleosome core DNA. To explain these data we propose a model whereby excision repair occurs in both linker and core DNA; however, in core DNA the repair process induces conformational changes resulting in temporarily increased SN sensitivity; subsequently, rearrangement occurs and results in the re-establishment of native or near-native nucleosome conformation and SN resistance.  相似文献   

13.
The subunit structure of chromatin from Physarum polycephalum.   总被引:4,自引:4,他引:0       下载免费PDF全文
Nucleosome DNA repeat lengths in Physarum chromatin, determined by nuclease digestion experiments, are shorter than those observed in most mammalian chromatin and longer than those reported for chromatin of certain other lower eukaryotes. After digestion with staphylococcal nuclease for short periods of time an average repeat length of 190 base pairs is measured. After more extensive digestion an average repeat length of 172 base pairs is measured. Upon prolonged digestion DNA is degraded to an average monomer subunit length of 160 base pairs, with only a small amount of DNA found in lengths of 130 base pairs or smaller. Mathematical analysis of the data suggests that the Physarum nucleosome DNA repeat comprises a protected DNA segment of about 159 base pairs with a nuclease-accessible interconnecting segment which ranges from 13 to 31 base pairs. The spacing data are compatible with measurements from electron micrographs of Physarum chromatin.  相似文献   

14.
Properties of condensed residual chromatin of mouse spleen, a component of residual nuclear structures, were studied. Extraction of the structures with buffers of different NaCl concentrations showed that the condensed chromatin consists of condensed nucleosomal chains. On increasing the ionic strength the complexes gradually fell apart into separate nucleosomal chains. DNA of condensed chromatin was accessible to staphylococcal nuclease and DNAase I, but digestion of this DNA was not accompanied by solubilization of the residual chromatin. Besides the essentially decreased total content of nonhistone chromosomal proteins the condensed chromatin practically did not contain HMG proteins. The nucleosome repeat length of this chromatin was shorter than that of chromatin solubilized by staphylococcal nuclease.  相似文献   

15.
Mobility of positioned nucleosomes on 5 S rDNA   总被引:13,自引:0,他引:13  
  相似文献   

16.
We have studied the structure of tandemly repetitive alpha-satellite chromatin (alpha-chromatin) in African green monkey cells (CV-1 line), using restriction endonucleases and staphylococcal nuclease as probes. While more than 80% of the 172-base-pair (bp) alpha-DNA repeats have a HindIII site, less than 15% of the alpha-DNA repeats have an EcoRI site, and most of the latter alpha-repeats are highly clustered within the CV-1 genome. EcoRI and HindIII solubilize approximately 8% and 2% of the alpha-chromatin, respectively, under the conditions used. EcoRI is thus approximately 30 times more effective than HindIII in solubilizing alpha-chromatin, with relation to the respective cutting frequencies of HindIII and EcoRI on alpha-DNA. EcoRI and HindIII solubilize largely non-overlapping subsets of alpha-chromatin. The DNA size distributions of both EcoRI- and HindIII-solubilized alpha-chromatin particles peak at alpha-monomers. These DNA size distributions are established early in digestion and remain strikingly constant throughout the digestion with either EcoRI or HindIII. Approximately one in every four of both EcoRI- and HindIII-solubilized alpha-chromatin particles is an alpha-monomer. Two-dimensional (deoxyribonucleoprotein leads to DNA) electrophoretic analysis of the EcoRI-solubilized, sucrose gradient-fractionated alpha-oligonucleosomes shows that they do not contain "hidden" EcoRI cuts. Moreover, although the EcoRI-solubilized alpha-oligonucleosomes contain one EcoRI site in every 172-bp alpha-DNA repeat, they are completely resistant to redigestion with EcoRI. This striking difference between the EcoRI-accessible EcoRI sites flanking an EcoRI-solubilized alpha-oligonucleosome and completely EcoRI-resistant internal EcoRI sites in the same alpha-oligonucleosome indicates either that the flanking EcoRI sites occur within a modified chromatin structure or that an altered nucleosome arrangement in the vicinity of a flanking EcoRI site is responsible for its location in the nuclease-sensitive internucleosomal (linker) region. Analogous redigestions of the EcoRI-solubilized alpha-oligonucleosomes with either HindIII, MboII or HaeIII (both before and after selective removal of histone H1 by an exchange onto tRNA) produce a self-consistent pattern of restriction site accessibilities. Taken together, these data strongly suggest a preferred nucleosome arrangement within the EcoRI-solubilized subset of alpha-oligonucleosomes, with the centers of most of the nucleosomal cores being approximately 20 bp and approximately 50 bp away from the nearest EcoRI and HindIII sites, respectively, within the 172-bp alpha-DNA repeat. However, as noted above, the clearly preferred pattern of nucleosome arrangement within the EcoRI-solubilized alpha-oligonucleosomes is invariably violated at the ends of every such alpha-oligonucleosomal particle, suggesting at least a partially statistical origin of this apparently non-random nucleosome arrangement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The positions and relative frequencies of the primary cleavages made by micrococcal nuclease on the DNA of nucleosome core particles have been found by fractionating the double-stranded products of digestion and examining their single-stranded compositions. This approach overcomes the problems caused by secondary events such as the exonucleolytic and pseudo-double-stranded actions of the nuclease and, combined with the use of high resolution gel electrophoresis, enables the cutting site positions to be determined with a higher precision than has been achieved hitherto. The micrococcal nuclease primary cleavage sites lie close (on average, within 0.5 nucleotide) to those previously determined by Lutter (1981) for the nucleases DNase I and DNase II. These similarities show that the accessible regions are the same for all three nucleases, the cleavage sites being dictated by the structure of the nucleosome core. The differences in the final products of the digestion are explained in terms of secondary cleavage events of micrococcal nuclease. While the strongly protected regions of the nucleosome core DNA are common to all three nucleases, there are differences in the relative degrees of cutting at the more exposed sites characteristic of the particular enzyme. In particular, micrococcal nuclease shows a marked polarity in the 3'-5' direction in the cutting rates as plotted along a single strand of the nucleosomal DNA. This is explained in terms of the three-dimensional structure of the nucleosome where, in any accessible region of the double helix, the innermost strand is shielded by the outermost strand on the one side and the histone core on the other. The final part of the paper is concerned with the preference of micrococcal nuclease to cleave at (A,T) sequences in chromatin.  相似文献   

18.
We have analysed by micrococcus nuclease digestion the chromatin structure of genes in the Balbiani ring (BR) regions of a Chironomus cell line. Gel electrophoresis of the DNA fragments reveals a repeating structure which consists of two repeat sizes, a long repeat seen in the large fragments and a small repeat seen in the small fragments. The two repeats hardly overlap, except in a narrow transition zone which is at a different fragment size in the BR 2.2 and the BR 2.1 gene. The sizes of the large repeats fit the repeat of the underlying DNA sequence. The short repeats are between 170 and 180 bp, and after H1 depletion the short repeat in the BR 2.2 gene is 160 bp. Our most favoured interpretation of these data is that in intact chromatin the nucleosomes in the BR genes are phased with respect to the repeating DNA sequence, whereas micrococcus nuclease digestion leads to loss of a nucleosome-positioning constraint and hence to rearrangement of the nucleosomes. Our results imply a possible artefact of nuclease digestion of chromatin, which has to be taken into account in mapping nucleosome positions.  相似文献   

19.
In Saccharomyces cerevisiae, DNA double-strand breaks (DSBs) initiate meiotic recombination at open sites in chromatin, which display a meiosis-specific increase in micrococcal nuclease (MNase) sensitivity. The arg4 promoter contains such a DSB site. When arg4 sequences are placed in a pBR322-derived insert at HIS4 (his4 :: arg4 ), the presence of strong DSB sites in pBR322 sequences leads to an almost complete loss of breaks from the insert-borne arg4 promoter region. Most of the MNase-sensitive sites occurred at similar positions in insert-borne and in normal ARG4 sequences, indicating that hotspot inactivation is not a consequence of changes in nucleosome positioning. However, a meiosis-specific increase in MNase hypersensitivity was no longer detected at the inactive insert-borne arg4 DSB site. Elimination of pBR322 sequences restored DSBs to the insert-borne arg4 promoter region and also restored the meiotic induction of MNase hypersensitivity. Thus, the meiotic induction of MNase hypersensitivity at the DSB sites is suppressed and activated in parallel to DSBs themselves, without changes in the underlying DNA sequence or nucleosome positioning. We suggest that meiosis-specific changes in chromatin at a DSB site are a signal reflecting a pivotal step in DSB formation.  相似文献   

20.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号