首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The avian eggshell membranes are essential elements in the fabrication of the calcified shell as a defense against bacterial penetration. Ovocalyxin-36 (OCX-36) is an abundant avian eggshell membrane protein, which shares protein sequence homology to bactericidal permeability-increasing protein (BPI), lipopolysaccharide-binding protein (LBP) and palate, lung and nasal epithelium clone (PLUNC) proteins. We have developed an efficient method to extract OCX-36 from chicken eggshell membranes for purification with cation and anion exchange chromatographies. Purified OCX-36 protein exhibited lipopolysaccharide (LPS) binding activity and bound lipopolysaccharide (LPS) from Escherichia coli O111:B4 in a dose-dependent manner. OCX-36 showed inhibitory activity against growth of Staphylococcus aureus ATCC 6538. OCX-36 single nucleotide polymorphisms (SNPs) were verified at cDNA 211 position and the corresponding proteins proline-71 (Pro-71) or serine-71 (Ser-71) were purified from eggs collected from genotyped hens. A significant difference between Pro-71 and Ser-71 OCX-36 for S. aureus lipoteichoic acid (LTA) binding activity was detected. The current study is a starting point to understand the innate immune role that OCX-36 may play in protection against bacterial invasion of both embryonated eggs (relevant to avian reproductive success) and unfertilized table eggs (relevant to food safety).  相似文献   

2.
The chicken egg possesses physical and chemical barriers to protect the embryo from pathogens. OCX-36 (ovocalyxin-36) was suggested to be a 36?kDa eggshell-specific protein that is secreted by the regions of the oviduct responsible for eggshell formation. Its expression is strongly up-regulated during shell calcification. This protein was also detected in vitelline membrane and expressed in gut tissues. Analysis of the OCX-36 protein sequence revealed that OCX-36 is related to the BPI (bactericidal permeability-increasing proteins)/LBP [LPS (lipopolysaccharide)-binding proteins]/PLUNC (palate, lung and nasal epithelium clone) superfamily, and that there are strong similarities between the exon/intron organization of the mammalian LBP/BPI and the avian OCX-36 genes. A recent study revealed that OCX-36 originates from a tandem duplication of an ancestral BPI/LBP/PLUNC gene, after the divergence of birds and mammals. Its antimicrobial activity was recently investigated and it was shown that OCX-36 binds to LPS from Escherichia coli. High-throughput methodologies have led to the identification of approximately 1000 new egg proteins. Among these are LBP/BPI proteins that might play a role in the natural defences of the egg to protect the embryo during its development in the external milieu, and may function to keep the table egg free of pathogens. The function of these BPI-like molecules is the subject of intense research to characterize their putative LPS-binding properties and antimicrobial activity.  相似文献   

3.
The avian eggshell is a composite biomaterial composed of non-calcifying eggshell membranes and the overlying calcified shell matrix. The calcified shell forms in a uterine fluid where the concentration of different protein species varies between the initial, rapid calcification and terminal phases of eggshell deposition. The role of these avian eggshell matrix proteins during shell formation is poorly understood. The properties of the individual components must be determined in order to gain insight into their function during eggshell mineralization. In this study, we have identified lysozyme as a component of the uterine fluid by microsequencing, and used western blotting, immunofluorescence and colloidal-gold immunocytochemistry to document its localization in the eggshell membranes and the shell matrix. Furthermore, Northern blotting and RT-PCR indicates that there is a gradient to the expression of lysozyme message by different regions of the oviduct, with significant albeit low levels expressed in the isthmus and uterus. Lysozyme protein is abundant in the limiting membrane that circumscribes the egg white and forms the innermost layer of the shell membranes. It is also present in the shell membranes, and in the matrix of the calcified shell. Calcite crystals grown in the presence of purified hen lysozyme exhibited altered crystal morphology. Therefore, in addition to its well-known anti-microbial properties that could add to the protective function of the eggshell during embryonic development, shell matrix lysozyme may also be a structural protein which in soluble form influences calcium carbonate deposition during calcification.  相似文献   

4.
The avian eggshell is a highly ordered biomineral composed mainly of calcium carbonate associated with an organic matrix composed of proteins, glycoproteins and proteoglycans. This structure provides the developing embryo with protection from physical damage and microbial invasion. Ovocalyxin-32 (OCX-32) is a 32 kDa eggshell-specific matrix protein which has been cloned and demonstrates 30% identity with the mammalian carboxypeptidase inhibitor, latexin. In order to further study its function, recombinant OCX-32 protein was expressed in E. coli. The protein was extracted from inclusion bodies and purified by sequential DEAE Sepharose and Ni2+ metal ion affinity chromatographies as a 58 kDa GST-fusion protein. The refolded GST-OCX-32 significantly inhibited bovine carboxypeptidase and also inhibited the growth of Bacillus subtilis. The results suggest that OCX-32 may show similar activity to the fusion protein and reinforce the antimicrobial properties of the eggshell by providing protection to the developing avian embryo. OCX-32 is the first example of an eggshell specific protein to be successfully cloned and expressed in a prokaryotic system. The association of an antimicrobial protease inhibitor with the outer eggshell and cuticle of the table egg may enhance the food safety of this product.  相似文献   

5.
C-type lectin-like proteins are major components of the calcified eggshell of multiple avian species. In this study, two representative avian C-type lectin-like proteins, ovocleidin-17 and ansocalcin, were purified from decalcified chicken and goose eggshell protein extracts and investigated for carbohydrate binding activity as well as antimicrobial activity. Purified ovocleidin-17 and ansocalcin were found to bind bacterial polysaccharides, and were bactericidal against Bacillus subtilis, Staphylococcus aureus and Pseudomona aeruginosa. Bactericidal activity was found to be enhanced in the presence of calcium but was not dependent on its presence. The results suggest that avian C-type lectin-like proteins may play an important antimicrobial role in defence of the avian embryo.  相似文献   

6.
Congjiao Sun  Guiyun Xu  Ning Yang 《Proteomics》2013,13(23-24):3523-3536
Eggshell strength is a crucial economic trait for table egg production. During the process of eggshell formation, uncalcified eggs are bathed in uterine fluid that plays regulatory roles in eggshell calcification. In this study, a label‐free MS‐based protein quantification technology was used to detect differences in protein abundance between eggshell matrix from strong and weak eggs (shell matrix protein from strong eggshells and shell matrix protein from weak eggshells) and between the corresponding uterine fluids bathing strong and weak eggs (uterine fluid bathing strong eggs and uterine fluid bathing weak eggs) in a chicken population. Here, we reported the first global proteomic analysis of uterine fluid. A total of 577 and 466 proteins were identified in uterine fluid and eggshell matrix, respectively. Of 447 identified proteins in uterine fluid bathing strong eggs, up to 357 (80%) proteins were in common with proteins in uterine fluid bathing weak eggs. Similarly, up to 83% (328/396) of the proteins in shell matrix protein from strong eggshells were in common with the proteins in shell matrix protein from weak eggshells. The large amount of common proteins indicated that the difference in protein abundance should play essential roles in influencing eggshell strength. Ultimately, 15 proteins mainly relating to eggshell matrix specific proteins, calcium binding and transportation, protein folding and sorting, bone development or diseases, and thyroid hormone activity were considered to have closer association with the formation of strong eggshell.  相似文献   

7.
The eggshell is a highly ordered structure resulting from the deposition of calcium carbonate concomitantly with an organic matrix upon the eggshell membranes. Mineralization takes place in an acellular uterine fluid, which contains the ionic and matrix precursors of the eggshell. We have identified a novel 32-kDa protein, ovocalyxin-32, which is expressed at high levels in the uterine and isthmus regions of the oviduct, and concentrated in the eggshell. Sequencing of peptides derived from the purified protein allowed expressed sequence tag sequences to be identified that were assembled to yield a full-length composite sequence whose conceptual translation product contained the complete amino acid sequence of ovocalyxin-32. Data base searches revealed that ovocalyxin-32 has limited identity (32%) to two unrelated proteins: latexin, a carboxypeptidase inhibitor expressed in the rat cerebral cortex and mast cells, and a skin protein, which is encoded by a retinoic acid receptor-responsive gene, TIG1. High level expression of ovocalyxin-32 was limited to the isthmus and uterus tissue, where immunocytochemistry at the light and electron microscope levels demonstrated that ovocalyxin-32 is secreted by surface epithelial cells. In the eggshell, ovocalyxin-32 localizes to the outer palisade layer, the vertical crystal layer, and the cuticle of the eggshell, in agreement with its demonstration by Western blotting at high levels in the uterine fluid during the termination phase of eggshell formation. Ovocalyxin-32 is therefore identified as a novel protein synthesized in the distal oviduct where hen eggshell formation occurs.  相似文献   

8.
The role of individual matrix proteins in avian eggshell calcification is poorly understood despite numerous attempts to characterize and localize their presence in the eggshell matrix. Ansocalcin, the major matrix protein from goose eggshell, was found to induce the formation of calcite crystal aggregates under in vitro. Owing to its high similarity with the chicken eggshell matrix protein ovocleidin 17 (OC-17), a comparative investigation has been carried out to understand the structure-function relationship. RP-HPLC shows that ansocalcin is the major component in extracts of goose eggshells before and after bleach treatment. However, OC-17 was observed in minute quantities in the extract of bleach-treated chicken eggshells. In vitro crystal growth experiments showed that OC-17 and ansocalcin interact differently with the calcite crystals formed. Circular dichroism, intrinsic tryptophan fluorescence, and dynamic light scattering studies showed that, under the conditions used in our experiments, OC-17 does not aggregate in solution or induce the nucleation of calcite aggregates in the concentration range used. These observations indicate that OC-17 and ansocalcin play different roles in the eggshell calcification. To our knowledge, this is the first report on the comparison of properties of homologous eggshell proteins that belong to the same phylogeny.  相似文献   

9.
10.
Eggs are widely consumed all over the world. The eggshell is its protective barrier whose original function is to protect the embryo during development. Avian eggshells are made of calcium carbonate with a small amount of organic matrix (proteins and proteoglycans). During eggshell formation, the mineral precursors interact with matrix proteins to regulate the calcification of this highly resistant biomineral. In order to better characterize the functions of matrix proteins in eggshell biominerals, many proteomics studies have been performed during the last 15 years. The chicken eggshell is the main model studied in birds, but there is a need for comparative approaches in order to determine whether there is a general protein toolkits associated with calcitic biomineralization, and to determine its components. The study by Zhu et al., reported in article number 1900011, volume 19, issue 11, is a major step forward as it is the first shell proteomics survey performed on duck. Thus, it will contribute to improved knowledge of the eggshell mineralization process and will provide new insight for shell quality improvement and to guide biomimetic efforts in material sciences.  相似文献   

11.
The avian eggshell is an acellular bioceramic containing organic and inorganic phases that are sequentially assembled during the time the egg moves along the oviduct. As it has been demonstrated in other mineralized tissues, mineralization of the eggshell is regulated by extracellular matrix proteins especially the anionic side chains of proteoglycans. Among them, osteopontin has been found in the avian eggshell and oviduct. However, its precise localization in the eggshell or in different oviduct regions during eggshell formation, nor its function have been established. By using anti-osteopontin antibody (OPN 1), we studied its immunolocalization in the isthmus, red isthmus and shell gland of the oviduct, and in the eggshell during formation. In the eggshell, osteopontin was localized in the core of the non-mineralized shell membrane fibers, in the base of the mammillae and in the outermost part of the palisade. In the oviduct, OPN 1 was localized in the ciliated epithelial but not in the tubular gland cells of the isthmus, in the ciliated epithelial cells of the red isthmus, and in the non-ciliated epithelial cells of the shell gland. The occurrence of osteopontin in each of the oviduct regions, coincided with the concomitant presence of the egg in such region. Considering the reported inhibitory function of osteopontin in other mineralized systems, together with its main occurrence in the non-mineralized parts of the eggshell and at the outermost part of the shell, suggests that this molecule could be part of the mechanism regulating the eggshell calcification.  相似文献   

12.
Eggshell strength is an important factor in an effort to minimize eggshell breakage, which is a significant problem in the egg production industry. In the current study, we isolated and quantified the specific glycosaminoglycans (GAGs) from the calcified eggshell and shell membranes, which are related to eggshell strength. Our data suggest that GAGs exist in calcified eggshell may influence morphology of shell but do not affect on increase of shell amount while GAGs of shell membranes are maybe highly associated with shell strength with an increase of shell weight. Shell strength showed a strong correlation with the content of GAGs (r=0.942, p<0.0005) and a weak relationship with uronic acid content (r=0.564, p=0.056) in shell membranes. Monosaccharides in shell membranes were determined by Bio-LC analysis for the identification of any specific GAGs related with shell strength. It indicates that the galactose content as a component of keratan sulfate (KS) has a significant correlation with eggshell strength (r=0.985, p<0.0005). These results suggest that eggshell strength is proportional to the KS content of eggshell membranes with an increase of eggshell weight.  相似文献   

13.
The avian egg is a valuable model for the calcitic biomineralization process as it is the fastest calcification process occurring in nature and is a clear example of biomineralization. In this study, iTRAQ MS/MS is used to detect and study for the first time: 1) the overall duck eggshell proteome; 2) regional differences in the proteome between the inner and outer portions of the duck eggshell. The new reference protein datasets allow us to identify 179 more eggshell proteins than solely using the current release of Ensembl duck annotations. In total, 484 proteins are identified in the entire duck eggshell proteome. Twenty‐eight novel proteins of unknown function that are involved in eggshell formation are also identified. Among the identified eggshell proteins, 54 proteins show differential abundances between the inner, partially mineralized eggshell (obtained 16 h after ovulation) compared to the overall complete eggshell (normally expulsed eggshell). At least 64 of the abundant matrix proteins are common to eggshell of 4 different domesticated bird species (chicken, duck, quail, turkey) and zebra finch. This study provides a new resource for avian eggshell proteomics, and augments the inventory of eggshell matrix proteins that will lead to a deeper understanding of calcitic biomineralization.  相似文献   

14.
Clusterin is a widely expressed secretory glycoprotein which is found in mammals as a disulfide-bonded alpha/beta heterodimer generated by cleavage of the single-chain precursor. In contrast, clusterin occurs in the chicken mainly as an intracellular single-chain form and is not observed in serum. The present report identifies chicken clusterin as a component of the eggshell. This extracellular clusterin originates in the uterine fluid, where it is a disulfide-bonded heterodimer derived from the precursor polypeptide by proteolytic cleavage at the same site as in mammals. Clusterin message expression in the oviduct was measured by real time RT-PCR, and levels were found to be highest in magnum and uterus. Western blotting using protein extracts of oviduct tissues indicated major clusterin production in the magnum, while immunostaining of the oviduct identified clusterin in the tubular glands of the uterus and the magnum. In addition, clusterin was detected in egg white by Western blotting. In the decalcified eggshell, immunofluorescence and colloidal-gold immunocytochemistry revealed that clusterin was predominantly localized in the palisade and mammillary layers, but also in the mantle and core of the inner and outer shell membranes. It has been suggested recently that clusterin acts as an extracellular chaperone. Thus clusterin could function in the uterine fluid to prevent the premature aggregation and precipitation of eggshell matrix components before and during their assembly into the rigid protein scaffold necessary for ordered mineralization.  相似文献   

15.
Eggs of trematode parasites are comprised of numerous vitelline cells and one fertilized ovum, and are encapsulated within a protein shell provided by the vitellocytes. In this study, we isolated two full-length cDNA clones that showed substantial levels of sequence identity with trematode-specific eggshell precursor proteins from the human lung fluke, Paragonimus westermani. These cDNAs, designated Pw-Vit20 (868-bp-long) and Pw-Vit36 (883-bp-long), shared a 76% identity with one another at the nucleotide level, and each encoded a 261-amino acid (aa) polypeptide. The deduced aa sequences contained a N-terminal hydrophobic segment, as well as a sequence motif of Gly-Gly-Gly-Tyr-Asp-Asn/Thr-Tyr-Gly-Lys/Gln, which is highly homologous with the eggshell proteins of Fasciola hepatica. With the high frequencies of tyrosine, glycine and lysine, the positions occupied by tyrosine, which has been proved to be converted into dihydroxyphenylalanine, were well preserved. Pw-Vit20 and Pw-Vit36 were found to be monoexonic genes with variably diverged variants scattered into multiple genomic loci. Their protein products were localized in the vitelline follicles and eggshells. Expression of Pw-Vit20 was restricted to the egg and adult stages, thus suggesting a critical involvement of Pw-Vit20 in the parasite's fecundity activity. Conversely, Pw-Vit36 was constitutively expressed in the metacercariae and juvenile stages in the vitelline follicles and ducts, which suggested that the prepositioning of stem or primordial vitelline cells within the juveniles prior to sexual maturation. Pw-Vit36 might acquire a unique or additional function relevant to the maturation and/or development of the vitelline cells/follicles during the evolutionary period of P. westermani. Differential biological implications of multiple eggshell precursor proteins may provide insight into the molecular mechanism of eggshell formation and the developmental process of the vitelline follicles in the parasitic trematode.  相似文献   

16.
1. Prostaglandins may be involved in calcium translocation in the avian shell gland, since indomethacin, administered at the beginning of shell formation, reduces eggshell thickness as well as 45Ca-uptake and prostaglandin synthesis by a homogenate of eggshell gland mucosa. 2. The stimulus for calcium transport in the shell gland during shell formation remains unknown. 3. The present study was undertaken to investigate the effects of progesterone on prostaglandin formation by the eggshell gland mucosa of the domestic fowl. 4. Progesterone significantly stimulated synthesis of PGF2 alpha, PGE2 and TXB2 by eggshell gland mucosa homogenate. 5. Progesterone treatment also induced the synthesis of the biotin-binding protein, avidin. 6. A microsomal fraction prepared from the eggshell gland mucosa had a high affinity for binding PGE2. 7. Progesterone treatment reduced the KD value of this binding without affecting the maximal number of binding sites. 8. Progesterone did not change the total calcium content of shell gland mucosa. 9. The role progesterone plays in prostaglandin formation and calcium transport in the eggshell gland mucosa is discussed.  相似文献   

17.
There is evidence to suggest that extracellular matrix molecules, such as proteoglycans, are involved in the regulation of mineral deposition in calcifying tissues. One mineralizing system which is characterized by extremely rapid mineralization is the hen eggshell. This eggshell consists of a pair of nonmineralized eggshell membranes subjacent to the calcified eggshell proper; the eggshell proper is organized into palisades (columns) of mineralized matrix separated by pores. Between the membranes and the shell proper are compacted foci of tissue called mammillary knobs, which are thought to be sites where mineralization is initiated. Previous work from this laboratory has shown the presence of types I, V, and X collagen in the shell membranes. To address the question of the possible role of proteoglycans and glycosaminoglycans in mineralization of the eggshell, two approaches were used. First, immunohistochemistry was performed with monoclonal antibodies to various proteoglycan and glycosaminoglycan epitopes. This analysis indicates that different glycosaminoglycans are localized to discrete regions within the eggshell. Dermatan sulfate is present within the matrix of the shell proper and, to a lesser extent, the mammillary knobs and the outer portion of the shell membranes. In contrast, keratan sulfate is found in the shell membranes and prominently in the mammillary knobs. Interestingly, different keratan sulfate antibodies immunostain distinct regions of the eggshell, which suggests that various types of keratan sulfate are distributed differently. The second approach utilized was to extract the eggshell membranes and recover anionic molecules by anion-exchange chromatography. This resulted in the extraction of material which was recognized by antibodies to keratan sulfate, but not to chondroitin sulfate. This material was very large, as evidenced by its elution in the void volume of a Sepharose CL-2B column. The large size may be due to the extensive cross-links known to occur in the eggshell. If eggshell membranes are extracted at elevated temperature, the material recovered is of much smaller size. These results indicate that molecules recognized by antibodies to glycosaminoglycans are present in the eggshell, and their localized distribution relative to the calcified matrix suggests that they may be involved in the regulation of mineral deposition.  相似文献   

18.
The female reproductive tract of birds is different from that of other oviparous amniotes in that the eggshell membranes and calcareous layer are formed in separate regions of the uterus; the isthmus and shell gland, respectively. Phylogenetically, birds are included among the archosaurs, along with crocodilians and dinosaurs. Many dinosaurs were oviparous, producing hard-shelled eggs, yet the reproductive system of dinosaurs has proven difficult to investigate, due to poor preservation of soft anatomy. In this study, we examined functional morphology and eggshell formation in a reptilian archosaur, the American alligator, and demonstrated that the crocodilian reproductive tract has separate uterine regions for formation of the eggshell membranes and calcareous layer. These uterine regions are ultrastructurally comparable to the isthmus and shell gland of birds, and may be homologous. This similarity of reproductive functional morphology between crocodilians and birds may implicate the evolution of an archosaurian mode of oviparity that may shed light on dinosaur reproduction.  相似文献   

19.
The eggshell of lizards is a complex structure composed of organic and inorganic molecules secreted by the oviduct, which protects the embryo by providing a barrier to the external environment and also allows the exchange of respiratory gases and water for life support. Calcium deposited on the surface of the eggshell provides an important nutrient source for the embryo. Variation in physical conditions encountered by eggs results in a tradeoff among these functions and influences eggshell structure. Evolution of prolonged uterine egg retention results in a significant change in the incubation environment, notably reduction in efficiency of gas exchange, and selection should favor a concomitant reduction in eggshell thickness. This model is supported by studies that demonstrate an inverse correlation between eggshell thickness and length of uterine egg retention. One mechanism leading to thinning of the eggshell is reduction in size of uterine shell glands. Saiphos equalis is an Australian scincid lizard with an unusual pattern of geographic variation in reproductive mode. All populations retain eggs in the uterus beyond the embryonic stage at oviposition typical for lizards, and some are viviparous. We compared structure and histochemistry of the uterus and eggshell of two populations of S. equalis, prolonged egg retention, and viviparous to test the hypotheses: 1) eggshell thickness is inversely correlated with length of egg retention and 2) eggshell thickness is positively correlated with size of shell glands. We found support for the first hypothesis but also found that eggshells of both populations are surprisingly thick compared with other lizards. Our histochemical data support prior conclusions that uterine shell glands are the source of protein fiber matrix of the eggshell, but we did not find a correlation between size of shell glands and eggshell thickness. Eggshell thickness is likely determined by density of uterine shell glands in this species. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
In this work, we report the crystallization of ovocleidin-17, the major protein of the avian eggshell calcified layer and the preliminary X-ray characterization of this soluble protein which is implied into the CaCO(3) formation of the eggshell in avians. Crystals belong to one of the trigonal space group P3 with cell dimensions a= b= 59.53 A and c = 83.33 A, and alpha=beta= 90 degrees and gamma=120 degrees. Crystals diffract up to 3.0 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号