首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Aquaporin-5 (AQP5) is a water channel protein expressed in lung, salivary gland, and lacrimal gland epithelia. Each of these sites may experience fluctuations in surface liquid osmolarity; however, osmotic regulation of AQP5 expression has not been reported. This study demonstrates that AQP5 is induced by hypertonic stress and that induction requires activation of extracellular signal-regulated kinase (ERK). Incubation of mouse lung epithelial cells (MLE-15) in hypertonic medium produced a dose-dependent increase in AQP5 expression; AQP5 protein peaked by 24 h and returned to baseline levels within hours of returning cells to isotonic medium. AQP5 induction was observed only with relatively impermeable solutes, suggesting an osmotic pressure gradient is required for induction. ERK was selectively activated in MLE-15 cells by hypertonic stress, and inhibition of ERK activation with two distinct mitogen-activated extracellular regulated kinase kinase (MEK) inhibitors, U0126 and PD98059, blocked AQP5 induction. AQP5 induction was also observed in the lung, salivary, and lacrimal glands of hyperosmolar rats, suggesting potential physiologic relevance for osmotic regulation of AQP5 expression. This report provides the first example of hypertonic induction of an extrarenal aquaporin, as well as the first association between mitogen-activated protein kinase signaling and aquaporin expression.  相似文献   

7.
8.
9.
10.
11.
Aquaporin-5 (AQP5), a major water channel in lung epithelial cells, plays an important role in maintaining water homeostasis in the lungs. Cell surface expression of AQP5 is regulated by not only mRNA and protein synthesis but also changes in subcellular distribution. We investigated the effect of lipopolysaccharide (LPS) on the subcellular distribution of AQP5 in a mouse lung epithelial cell line (MLE-12). LPS caused significant increases in AQP5 in the plasma membrane at 0.5-2 h. Immunofluorescence and Western blotting strongly suggested that LPS altered AQP5 subcellular distribution from an intracellular vesicular compartment to the plasma membrane. The specific p38 MAP kinase inhibitor SB 203580 apparently prevented LPS-induced changes in AQP5 distribution. Furthermore, LPS increased the osmotic water permeability of MLE-12 cells. These findings demonstrate that LPS increases cell surface AQP5 expression by changing its subcellular distribution and increases membrane osmotic water permeability through activation of p38 MAP kinase.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in lacrimal glands, salivary glands, and distal lung. Several studies using AQP5 knockout mice have revealed that AQP5 plays an important role in maintaining water homeostasis in the lung. We report here that all-trans retinoic acid (atRA) increases plasma membrane water permeability, AQP5 mRNA and protein expression, and AQP5 promoter activity in MLE-12 cells. The promoter activation induced by atRA was diminished by mutation at the Sp1/Sp3 binding element (SBE), suggesting that the SBE mediates the effects of atRA. In addition, atRA increased the binding of Sp1 to the SBE without changing the levels of Sp1 in the nucleus. Taken together, our data indicate that atRA increases AQP5 expression through transactivation of Sp1, leading to an increase in plasma membrane water permeability.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号