首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Carbon dioxide uptake and water release through stomata, controlling the opening and closure of stomatal pore size in the leaf surface, is critical for optimal plant performance. Stomatal movements are regulated by multiple signalling pathways involving guard cell ion channels. Using reverse genetics, we recently isolated a T-DNA insertion mutant for the Arabidopsis ABC-transporter AtMRP5 (mrp5-1). Guard cells from mrp5-1 mutant plants were found to be insensitive to the sulfonylurea compound glibenclamide, which in the wild type induces stomatal opening in the dark. Here, we report that the knockout in AtMRP5 affects several signalling pathways controlling stomatal movements. Stomatal apertures of mrp5-1 and wild-type Ws-2 were identical in the dark. In contrast, opening of stomata of mrp5-1 plants was reduced in the light. In the light, stomatal closure of mrp5-1 was insensitive to external calcium and abscisic acid, a phytohormone responsible for stomatal closure during drought stress. In contrast to Ws-2, the phytohormone auxin could not stimulate stomatal opening in the mutant in darkness. All stomatal phenotypes were complemented in transgenic mrp5-1 plants transformed with a cauliflower mosaic virus (CaMV) 35S-AtMRP5 construct. Both whole-plant and single-leaf gas exchange measurements demonstrated a reduced transpiration rate of mrp5-1 in the light. Excised leaves of mutant plants exhibited reduced water loss, and water uptake was strongly decreased at the whole-plant level. Finally, if plants were not watered, mrp5-1 plants survived much longer due to reduced water use. Analysis of CO2 uptake and transpiration showed that mrp5-1 plants have increased water use efficiency. Mutant plants overexpressing AtMRP5 under the control of the CaMV 35S promoter again exhibited wild-type characteristics. These results demonstrate that multidrug resistance-associated proteins (MRPs) are important components of guard cell functioning.  相似文献   

2.
Arabidopsis possesses a superfamily of ATP-binding cassette (ABC) transporters. Among these, the multidrug resistance-associated protein AtMRP5/AtABCC5 regulates stomatal aperture and controls plasma membrane anion channels of guard cells. Remarkably, despite the prominent role of AtMRP5 in conferring partial drought insensitivity upon Arabidopsis, we know little of the biochemical function of AtMRP5. Our phylogenetic analysis showed that AtMRP5 is closely related to maize MRP4, mutation of which confers a low inositol hexakisphosphate kernel phenotype. We now show that insertion mutants of AtMRP5 display a low inositol hexakisphosphate phenotype in seed tissue and that this phenotype is associated with alterations of mineral cation and phosphate status. By heterologous expression in yeast, we demonstrate that AtMRP5 encodes a specific and high affinity ATP-dependent inositol hexakisphosphate transporter that is sensitive to inhibitors of ABC transporters. Moreover, complementation of the mrp5-1 insertion mutants of Arabidopsis with the AtMRP5 cDNA driven from a guard cell-specific promoter restores the sensitivity of the mutant to abscisic acid-mediated inhibition of stomatal opening. Additionally, we show that mutation of residues of the Walker B motif prevents restoring the multiple phenotypes associated with mrp5-1. Our findings highlight a novel function of plant ABC transporters that may be relevant to other kingdoms. They also extend the signaling repertoire of this ubiquitous inositol polyphosphate signaling molecule.  相似文献   

3.
Lee EK  Kwon M  Ko JH  Yi H  Hwang MG  Chang S  Cho MH 《Plant physiology》2004,134(1):528-538
Recently, a new member of the ABC transporter superfamily of Arabidopsis, AtMRP5, was identified and characterized. In the present work, we found that AtMRP5 can bind specifically to sulfonurea when it is expressed in HEK293 cells. We also present evidence for a new role of AtMRP5 in the salt stress response of Arabidopsis. We used reverse genetics to identify an Arabidopsis mutant (atmrp5-2) in which the AtMRP5 gene was disrupted by transferred DNA insertion. In root-bending assays using Murashige and Skoog medium supplemented with 100 mm NaCl, root growth of atmrp5-2 was substantially inhibited in contrast to the almost normal growth of wild-type seedlings. This hypersensitive response of the atmrp5-2 mutant was not observed during mannitol treatment. The root growth of the wild-type plant grown in Murashige and Skoog medium supplemented with the MRP inhibitor glibenclamide and NaCl was inhibited to a very similar extent as the root growth of atmrp5-2 grown in NaCl alone. The Na(+)-dependent reduction of root growth of the wild-type plant in the presence of glibenclamide was partially restored by diazoxide, a known K+ channel opener that reverses the inhibitory effects of sulfonylureas in animal cells. Moreover, the atmrp5-2 mutant was defective in 86Rb+ uptake. When seedlings were treated with 100 mm NaCl, atmrp5-2 seedlings accumulated less K+ and more Na+ than those of the wild type. These observations suggest that AtMRP5 is a putative sulfonylurea receptor that is involved in K+ homeostasis and, thus, also participates in the NaCl stress response.  相似文献   

4.
Plants can regulate levels of the auxin indole-3-acetic acid (IAA) by conjugation to amino acids or sugars, and subsequent hydrolysis of these conjugates to release active IAA. These less active auxin conjugates constitute the majority of IAA in plants. We isolated the Arabidopsis ilr2-1 mutant as a recessive IAA-leucine resistant mutant that retains wild-type sensitivity to free IAA. ilr2-1 is also defective in lateral root formation and primary root elongation. In addition, ilr2-1 is resistant to manganese- and cobalt-mediated inhibition of root elongation, and microsomal preparations from the ilr2-1 mutant exhibit enhanced ATP-dependent manganese transport. We used a map-based positional approach to clone the ILR2 gene, which encodes a novel protein with no predicted membrane-spanning domains that is polymorphic among Arabidopsis accessions. Our results demonstrate that ILR2 modulates a metal transporter, providing a novel link between auxin conjugate metabolism and metal homeostasis.  相似文献   

5.
Cho M  Lee SH  Cho HT 《The Plant cell》2007,19(12):3930-3943
ATP binding cassette (ABC) transporters transport diverse substrates across membranes in various organisms. However, plant ABC transporters have only been scantily characterized. By taking advantage of the auxin-sensitive Arabidopsis thaliana root hair cell and tobacco (Nicotiana tabacum) suspension cell systems, we show here that Arabidopsis P-glycoprotein4 (PGP4) displays auxin efflux activity in plant cells. Root hair cell-specific overexpression of PGP4 (PGP4ox) and known auxin efflux transporters, such as PGP1, PGP19, and PIN-FORMEDs, decreased root hair elongation, whereas overexpression of the influx transporter AUXIN-RESISTANT1 enhanced root hair length. PGP4ox-mediated root hair shortening was rescued by the application of auxin or an auxin efflux inhibitor. These results indicate that the increased auxin efflux activity conferred by PGP4 reduces auxin levels in the root hair cell and consequently inhibits root hair elongation. PGP4ox in tobacco suspension cells also increased auxin efflux. PGP4 proteins were targeted to the plasma membrane of Arabidopsis root hair cells and tobacco cells without any clear subcellular polarity. Brefeldin A partially interfered with the trafficking of PGP4 reversibly, and this was rescued by pretreatment with auxin. These results suggest that PGP4 is an auxin efflux transporter in plants and that its trafficking to the plasma membrane involves both BFA-sensitive and -insensitive pathways.  相似文献   

6.
Lin R  Wang H 《Plant physiology》2005,138(2):949-964
Light and auxin control many aspects of plant growth and development in an overlapping manner. We report here functional characterization of two closely related ABC (ATP-binding cassette) transporter genes, AtMDR1 and AtPGP1, in light and auxin responses. We showed that loss-of-function atmdr1 and atpgp1 mutants display hypersensitivity to far-red, red, and blue-light inhibition of hypocotyl elongation, reduced chlorophyll and anthocyanin accumulation, and abnormal expression of several light-responsive genes, including CAB3, RBCS, CHS, and PORA, under both darkness and far-red light conditions. In addition, we showed that the atmdr1-100 and atmdr1-100/atpgp1-100 mutants are defective in multiple aspects of root development, including increased root-growth sensitivity to 1-naphthalene acetic acid (1-NAA), and decreased sensitivity to naphthylphthalamic acid (NPA)-mediated inhibition of root elongation. Consistent with the proposed role of AtMDR1 in basipetal auxin transport, we found that expression of the auxin responsive DR5::GUS reporter gene in the central elongation zone is significantly reduced in the atmdr1-100 mutant roots treated with 1-NAA at the root tips, compared to similarly treated wild-type plants. Moreover, atmdr1-100, atpgp1-100, and their double mutants produced fewer lateral roots, in the presence or absence of 1-NAA or NPA. The atmdr1-100 and atmdr1-100/atpgp1-100 mutants also displayed enhanced root gravitropism. Genetic-epistasis analysis revealed that mutations in phyA largely suppress the randomized-hypocotyl growth and the short-hypocotyl phenotype of the atmdr1-100 mutants under far-red light, suggesting that phyA acts downstream of AtMDR1. Together, our results suggest that AtMDR1 and AtPGP1 regulate Arabidopsis (Arabidopsis thaliana) photomorphogenesis and multiple aspects of root development by mediating polar auxin transport.  相似文献   

7.
Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED (PIN) proteins for auxin efflux and AUXIN RESISTANT 1 (AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arabidopsis homolog of the human unconventional prefoldin RPB5 interactor (URI). AtURI interacted with prefoldin 2 (PFD2) and PFD6, two β-type PFD members that modulate actin and tubulin patterning in roots. The auxin reporter DR5rev:GFP showed that asymmetric auxin redistribution after gravistimulation is disordered in aturi-1 root tips. Treatment with the endomembrane protein trafficking inhibitor brefeldin A indicated that recycling of the auxin transporter PIN2 is disrupted in aturi-1 roots as well as in pfd mutants. We propose that AtURI cooperates with PFDs to recycle PIN2 and modulate auxin distribution.  相似文献   

8.
ATP-binding cassette (ABC) transporters are membrane proteins responsible for cellular detoxification processes in plants and animals. Recent evidence shows that this class of transporters may also be involved in many other cellular processes. Because of their homology with human multidrug resistance-associated proteins (MRP), cystic fibrosis transmembrane conductance regulator (CFTR) and sulfonylurea receptor (SUR), some plant ABC transporters have been implicated in the regulation of ion channel activities. This paper describes an investigation of the AtMRP4 gene and its role in stomatal regulation. Reporter gene studies showed that AtMRP4 is highly expressed in stomata and that the protein is localized to the plasma membrane. Stomatal aperture in three independent atmrp4 mutant alleles was larger than in wild-type plants, both in the light and in the dark, resulting in increased water loss but no change in the photosynthetic rate. In baker's yeast, AtMRP4 shows ATP-dependent, vanadate-sensitive transport of methotrexate (MTX), an antifolate and a substrate of mammalian MRPs. Treatment with MTX reduced stomatal opening in wild-type plants, but had no effect in atmrp4 mutants. These results indicate the involvement of AtMRP4 in the complex regulation of stomatal aperture.  相似文献   

9.
Legume plants develop root nodules through symbiosis with rhizobia, and fix atmospheric nitrogen in this symbiotic organ. Development of root nodules is regulated by many metabolites including phytohormones. Previously, we reported that auxin is strongly involved in the development of the nodule vascular bundle and lenticel formation on the nodules of Lotus japonicus. Here we show that an ATP-binding cassette (ABC) protein, LjABCB1, which is a homologue of Arabidopsis auxin transporter AtABCB4, is specifically expressed during nodulation of L. japonicus. A reporter gene analysis indicated that the expression of LjABCB1 was restricted to uninfected cells adjacent to infected cells in the nodule, while no expression was observed in shoot apical meristems or root tips, in which most auxin transporter genes are expressed. The auxin transport activity of LjABCB1 was confirmed using a heterologous expression system.  相似文献   

10.
11.
Three ATP binding cassette (ABC) transporter-like activities directed toward large amphipathic organic anions have recently been identified on the vacuolar membrane of plant cells. These are the Mg-ATP-energized, vanadate-inhibitable vacuolar accumulation of glutathione S-conjugates (GS conjugates), chlorophyll catabolites, and bile acids, respectively. Although each of these activities previously had been assigned to distinct pumps in native plant membranes, we describe here the molecular cloning, physical mapping, and heterologous expression of a gene, AtMRP2, from Arabidopsis thaliana that encodes a multispecific ABC transporter competent in the transport of both GS conjugates and chlorophyll catabolites. Unlike its isoform, AtMRP1, which transports the model Brassica napus chlorophyll catabolite transporter substrate Bn-NCC-1 at low efficiency, heterologously expressed AtMRP2 has the facility for simultaneous high-efficiency parallel transport of GS conjugates and Bn-NCC-1. The properties of AtMRP2 therefore establish a basis for the manipulation of two previously identified plant ABC transporter activities and provide an explanation for how the comparable transporter in native plant membranes would be systematically mistaken for two distinct transporters. These findings are discussed with respect to the functional organization of AtMRP2, the inability of AtMRP2 and AtMRP1 to transport the model bile acid transporter substrate taurocholate (despite the pronounced sensitivity of both to direct inhibition by this agent), the differential patterns of expression of their genes in the intact plant, and the high capacity of AtMRP2 for the transport of glutathionated herbicides and anthocyanins.  相似文献   

12.
Redox plays a critical role in controlling many cellular processes of plant growth and development. To understand the effect of changes in redox on cell-type determination in the root meristem, we examined the influence of a strong reducing agent -ascorbic acid (AA) - on both the expression patterns of several cell type-specific promoters and the endogenous auxin sensitivity of auxin-responsive DR5::GUS transgenic plants. AA treatment altered the regular expression of columella-specific markers. Moreover, when the same treatment was applied to the DR5::GUS lines, normal expression of the GUS reporter was completely abolished in the auxin maximum, while exogenous auxin restored AA-driven depletion of that maximum. Interestingly, the level of DHA (dehydroascorbate, an oxidized form of AA) in the AA-treated roots was greatly increased. This indicates that changes in cell-type specificity and the sensitivity to endogenous auxin may result from an increase in the cellular DHA that is metabolized from exogenously supplied AA. Therefore, we propose that redox changes in the root meristem alter auxin homeostasis, perhaps causing a change in cell types within the root meristem.  相似文献   

13.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

14.
Stomatal guard cells control CO(2) uptake and water loss between plants and the atmosphere. Stomatal closure in response to the drought stress hormone, abscisic acid (ABA), results from anion and K(+) release from guard cells. Previous studies have shown that cytosolic Ca(2+) elevation and ABA activate S-type anion channels in the plasma membrane of guard cells, leading to stomatal closure. However, membrane-bound regulators of abscisic acid signaling and guard cell anion channels remain unknown. Here we show that the ATP binding cassette (ABC) protein AtMRP5 is localized to the plasma membrane. Mutation in the AtMRP5 ABC protein impairs abscisic acid and cytosolic Ca(2+) activation of slow (S-type) anion channels in the plasma membrane of guard cells. Interestingly, atmrp5 insertion mutant guard cells also show impairment in abscisic acid activation of Ca(2+)-permeable channel currents in the plasma membrane of guard cells. These data provide evidence that the AtMRP5 ABC transporter is a central regulator of guard cell ion channel during abscisic acid and Ca(2+) signal transduction in guard cells.  相似文献   

15.
The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates primordia emergence through increased accumulation of auxin or change in sensitivity to auxin in the primordia. Both the strong effect of 2,3,5-triiodobenzoic acid and the phenotype of the auxin-transport mutants (aux1, eir1) suggest that low P availability modifies local auxin concentrations within the root system through changes in auxin transport rather than auxin synthesis.  相似文献   

16.
Niu Y  Jin C  Jin G  Zhou Q  Lin X  Tang C  Zhang Y 《Plant, cell & environment》2011,34(8):1304-1317
Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 μL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 μL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.  相似文献   

17.
18.
Previously, the immunophilin-like protein TWD1 from Arabidopsis has been demonstrated to interact with the ABC transporters AtPGP1 and its closest homologue, AtPGP19. Physiological and biochemical investigation of pgp1/pgp19 and of twd1 plants suggested a regulatory role of TWD1 on AtPGP1/AtPGP19 transport activities. To further understand the dramatic pleiotropic phenotype that is caused by loss-of-function mutation of the TWD1 gene, we were interested in other TWD1 interacting proteins. AtMRP1, a multidrug resistance-associated (MRP/ABCC)-like ABC transporter, has been isolated in a yeast two-hybrid screen. We demonstrate molecular interaction between TWD1 and ABC transporters AtMRP1 and its closest homologue, AtMRP2. Unlike AtPGP1, AtMRP1 binds to the C-terminal tetratricopeptide repeat domain of TWD1, which is well known to mediate protein-protein interactions. Domain mapping proved that TWD1 binds to a motif of AtMRP1 that resembles calmodulin-binding motifs; and calmodulin binding to the C-terminus of MRP1 was verified. By membrane fractionation and GFP-tagging, we localized AtMRP1 to the central vacuolar membrane and the TWD1-AtMRP1 complex was verified in vivo by coimmunoprecipitation. We were able to demonstrate that TWD1 binds to isolated vacuoles and has a significant impact on the uptake of metolachlor-GS and estradiol-beta-glucuronide, well-known substrates of vacuolar transporters AtMRP1 and AtMRP2.  相似文献   

19.
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号